Phospho-calcium metabolism disorders
Authors:
Milan Bayer
Authors‘ workplace:
Klinika dětí a dorostu, 3. lékařská fakulta, Univerzita Karlova a FN Královské Vinohrady, Praha
Published in:
Čes-slov Pediat 2025; 80 (2): 68-75.
Category:
Chapters for Specialization in Pediatrics
doi:
https://doi.org/10.55095/CSPediatrie2025/008
Overview
Calcium and phosphorus are important minerals whose metabolism and homeostasis in the body involve many hormones and organs, especially the skeleton, parathyroid glands, digestive tract and kidneys. Disturbances in phospho-calcium metabolism may be associated with non-physiological serum concentrations of these minerals, pathological processes in bone tissue, and disturbances in major regulatory systems, particularly the parathyroid glands, kidneys, and gastrointestinal tract.
Keywords:
calcium – hypocalcemia – phosphorus – treatment – hypercalcemia – hyperphosphatemia – hypophosphatemia
Sources
1. White KE, Econs MJ. Fibroblast growth factor-23 (FGF23). In: Rosen CJ (ed.). Primer on the Metabolic Bone Disease and Disorders of Mineral Metabolism. 8th edition. 2013: 194–199.
2. Tinawi M. Disorders of calcium metabolism: hypocalcemia and hypercalcemia. Cureus 2021; 13(1): e12420.
3. Carpenter TO. Primary disorders of phosphate metabolism. [Updated 2022 Jun 8]. In: Feingold KR, Anawalt B, Blackman MR, et al. (eds.). Endotext. South Dartmouth (MA): MDText.com, Inc. 2000. Dostupné z: https://www.ncbi.nlm.nih.gov/books/NBK279172/
4. Blau JE, Simonds WF. Familial hyperparathyroidism. Front Endocrinol (Lausanne) 2021; 12: 623667.
5. Roszko KL, Bi RD, Mannstadt M. Autosomal dominant hypocalcemia (hypoparathyroidism) types 1 and 2. Front Physiol 2016; 7: 458.
6. Nissenson RA, Juppner H. Parathyroid hormone. In: Rosen CJ (ed.). Primer on the Metabolic Bone Disease and Disorders of Mineral Metabolism. 8th edition. 2013: 208–214.
7. Shaker JL, Deftos L. Calcium and phosphate homeostasis. [Updated 2023 May 17]. In: Feingold KR, Anawalt B, Blackman MR, et al. (eds.). Endotext. South Dartmouth (MA): MDText.com, Inc. 2000. Dostupné z: https://www.ncbi.nlm.nih.gov/books/NBK279129/
8. On JSW, Chow BKC, Lee LTO. Evolution of parathyroid hormone receptor family and their ligands in vertebrate. Front Endocrinol 2015. Dostupné z: 10.3389/fendo.2015.00028
9. Lehmann U, Hirche F, Stangl GI, et al. Bioavailability of vitamin D2 and D3 in healthy volunteers, a randomized placebo-controlled trial. J Clin Endocrinol Metab 2013; 98: 4339–4345.
10. Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention od vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2011; 96(7): 1911–1930.
11. Norman PE, Powell JT. Vitamin D and cardiovascular disease. Circ Res 2014; 114(2): 379–393.
12. Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol 2014; 21(3): 319–329.
13. Gil A, Plaza-Diaz J, Mesa MD. Vitamin D: classic and novel actions. Ann Nutr Metab 2018; 72(2): 87–95.
14. Urakawa I, Yamazaki Y, Shimada T, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 2006; 444: 770–774.
15. Goltzman D. Approach to hypercalcemia. [Updated 2023 Apr 17]. In: Feingold KR, Anawalt B, Blackman MR, et al. (eds.). Endotext. South Dartmouth (MA): MDText.com, Inc. 2000. Dostupné z: https://www.ncbi.nlm.nih.gov/books/NBK279129/
16. Colantonio DA, Kyriakopoulou L, Chan KM, et al. Closing the gaps in pediatric laboratory reference intervals: a CALIPER database of 40 biochemical markers in a healthy and multiethnic population in children. Clin Chem 2012; 58(5): 854–68.
17. Auron A, Alon US. Hypercalcemia: a consultant’s approach. Pediatr Nephrol 2018; 33(9): 1475–1488.
18. Gorvin CM. Genetic causes of neonatal and infantile hypercalcaemia. Pediatr Nephrol 2022; 37(2): 289–301.
19. Canaff L, Guarnieri V, Kim Y, et al. Novel glial cells missing-2 (GCM2) variants in parathyroid disorders. Eur J Endocrinol 2022; 186(3): 351–366.
20. Kifor O, Moore FD Jr, Delaney M, et al. A syndrome of hypocalciuric hypercalcemia caused by autoantibodies directed at the calcium-sensing receptor. J Clin Endocrinol Metab 2003; 88(1): 60–72.
21. Stokes VJ, Nielsen MF, Hannan FM, Thakker RV. Hypercalcemic disorders in children. J Bone Miner Res 2017; 32(11): 2157–2170.
22. Schlingmann KP, Kaufmann M, Weber S, et al. Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N Engl J Med 2011; 365(5): 410–421.
23. Saponaro F. Rare causes of hypercalcemia. Endocrinol Metab Clin North Am 2021; 50(4): 769–779.
24. Saarela T, Similä S, Koivisto M. Hypercalcemia and nephrocalcinosis in patients with congenital lactase deficiency. J Pediatr 1995; 127: 920–923.
25. Nadar R, Shaw N. Investigation and management of hypocalcaemia. Arch Dis Child 2020; 105(4): 399–405.
26. Bastepe M, Gensure RC. Hypoparathyroidism and pseudohypoparathyroidism. [Updated 2024 May 8]. In: Feingold KR, Anawalt B, Blackman MR, et al. (eds.). Endotext. South Dartmouth (MA): MDText.com, Inc. 2000. Dostupné z: https://www.ncbi.nlm.nih.gov/books/NBK279165/
27. Astor MC, Lovas K, Wolff AS, et al. Hypomagnesemia and functional hypoparathyroidism due to novel mutations in the Mg-channel TRPM6. Endocr Connect 2015; 4(4): 215–22.
28. Duchatelet S, Ostergaard E, Cortes D, et al. Recessive mutations in PTHR1 cause contrasting skeletal dysplasias in Eiken and Blomstrand syndromes. Hum Mol Genet 2005; 14(1): 1–5.
29. Bharill S, Wu M. Hypocalcaemia and hypercalcaemia in children. Pediatr Rev 2023; 44(9): 533–536.
30. Fabi M, Gesuete V, Petrucci R, et al. Dilated cardiomyopathy due to hypocalcaemic rickets: is it always a reversible condition? Cardiol Young 2013; 23(5): 769–72.
31. Bayer M. Hypokalcemie. In: Bayer M, Kutílek Š, Feber J, Gut J. Metabolická onemocnění skeletu u dětí. Praha: Grada Publishing 2002: 153–166.
32. Portales-Castillo I, Rieg T, Khalid SB, et al. Physiopathology of phosphate disorders. Adv Kidney Dis Health 2023; 30(2): 177–188.
33. Eswarakumar AS, Ma NS, Ward LM, et al. Long-term follow-up of hypophosphatemic bone disease associated with elemental formula use: sustained correction of bone disease after formula change or phosphate supplementation. Clin Pediatr (Phila) 2020; 59(12): 1080–1085.
34. Michigami T. Advances in understanding of phosphate homeostasis and related disorders. Endocrine J 2022; 69(8): 881–896.
35. Ferreira CR, Hackbarth ME, Ziegler SG, et al. Prospective phenotyping of long-term survivors of generalized arterial calcification of infancy (GACI). Genet Med 2021; 23(2): 396–407.
36. Imel EA. Congenital conditions of hypophosphatemia in children. Calcif Tissue Int 2021; 108(1): 74–90.
37. Bowe AE, Finnegan R, Jan de Beur SM, et al. FGF-23 inhibits renal tubular P transport and is a PHEX substrate. Biochem Biophys Res Commun 2001; 284: 977–981.
38. Bergwitz C, Miyamoto K-I. Hereditary hypophosphatemic rickets with hypercalciuria: pathophysiology, clinical presentation, diagnosis and therapy. Pflügers Arch 2019; 471(1): 149–163.
39. Tiosano D, Hochberg Z. Hypophosphatemia: the common denominator of all rickets. J Bone Miner Metab 2009; 27: 392–401.
40. Imel EA, Glorieux FH, Whyte MP, et al. Burosumab versus conventional therapy in children with X-linked hypophosphataemia: a randomised, active-controlled, open-label, phase 3 trial. Lancet 2019; 393(10189): 2416–2427.
Labels
Neonatology Paediatrics General practitioner for children and adolescentsArticle was published in
Czech-Slovak Pediatrics

2025 Issue 2
- What Effect Can Be Expected from Limosilactobacillus reuteri in Mucositis and Peri-Implantitis?
- The Importance of Limosilactobacillus reuteri in Administration to Diabetics with Gingivitis
Most read in this issue
- Ze sbírky galerie výtvarného umění (GAVU) Cheb
- Barevná škála stolice: aktualita Zdravotního a očkovacího průkazu (ZOP)
- Nedostatek lékařů v regionech: kulatý stůl na Pražském hradě
- 100 rokov nemocničnej starostlivosti o detského pacienta na východe Slovenska