#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Omega 6 and 3 fatty acids – developmental aspects and health significance


Authors: Jindřich Mourek;  Jaroslav Pokorný
Authors‘ workplace: Fyziologický ústav 1. LF UK, Praha
Published in: Čes. a slov. Psychiat., 121, 2025, No. 6, pp. 257-262.
Category: Review
doi: https://doi.org/10.48095/cccsp202518

Overview

Polyunsaturated fatty acids (omega 6 and omega 3) play a crucial role in the development and function of the central nervous system. Imbalances in their intake may contribute to a number of neurodevelopmental disorders. Classically, polyunsaturated fatty acids (PUFAs) have been considered relatively inert structural components of the brain, which are very important for the formation of cell membranes. However, in recent years, additional specific functions of these membrane components have been demonstrated. It has been shown that mainly omega 3 polyunsaturated fatty acids (n-3 PUFAs) protect the neonatal brain from hypoxic/ischemic damage. One of the main determinants of brain vulnerability is the permeability of the blood-brain barrier (BBB). The BBB is shown to be pathologically permeable in a number of disease states, including schizophrenia, epilepsy, traumatic brain injury, autism, and some cognitive disorders. n-3 PUFAs are necessary for the formation of tight junctions of cerebral vascular endothelial cells, and at the same time suppress the activation of matrix metalloproteinases, which are one of the factors that reduce the tightness of the BBB. They contribute to maintaining the integrity of the BBB and thus the stability of the internal environment of the brain. Tissues with a high metabolic turnover rate are rich in PUFAs. The activity of oxidative processes is associated with the function of mitochondria and is exceptionally high in nervous tissue (20% of resting metabolic activity). n-3 PUFAs are a part of mitochondrial phospholipids, mainly in the lipid bilayer of the inner membranes, necessary for oxidative phosphorylation and energy storage in the form of ATP. Mitochondrial dysfunction plays an important role in brain aging, in the pathogenesis of neurodegenerative diseases, as a result of ischemic strokes, or in other forms of cognitive dysfunction. One of the proven positive consequences of PUFA administration may therefore be the restoration of mitochondrial structure and BBB functions. Clinical evidence suggests that PUFAs may have beneficial effects on brain functions. Due to the scope of the presented issues, the main emphasis is placed on areas where the authors have their own experimental experience.

Keywords:

Cell membranes – omega 6 polyunsaturated fatty acids – omega 3 polyunsaturated fatty acids – hypoxic/ischemic brain impairment – blood-brain barrier permeability – mitochondrial phospholipids


Sources

1. Oftedal OT. The evolution of milk secretion and its ancient origins. Anim 2012; 6 (3): 355–368.

2. Mydlilová A, Mourek J, Baše J, Šmídová L. Spektrum mastných kyselin v průběhu laktace. Neonat Zpravodaj 1992; 2 : 202–213.

3. Riordan J, Wampach K. Breastfeeding and Human Lactation. Sudbury, Massachusetts, USA: Jones and Bartlett Publishers 2009 : 912.

4. Sun Q. The hydrophobic effects: our current understanding. Molecules 2022; 27 (20): 7009. doi: 10.3390/molecules27207009.

5. Larson R, Epiotis ND, Bernardi F. The importance of σ conjugative interactions in rotational isomerism. J Am Chem Soc 1978; 100 (18): 5713–5716. doi: 10.1021/ja00485a015.

6. Birkmayer GD. NADH, the Biological Hydrogen: The Secret of Our Life Energy. Basic Health Publications 2009: Chapter 1.

7. Rustan AC, Drevon CA. Fatty acids: structures and properties. Encycl Life Sci 2005; 1 : 1–7.

8. Mourek J, Mourek J Jr. Developmentally dependent and different roles of fatty acids omega-6 and omega-3. Prague Med Rep 2011; 112 (2): 81–92.

9. Mourek J. Mastné kyseliny omega-3: zdraví a vývoj. 2. rozšířené vydání. Praha: Triton 2009 : 187.

10. Mourek J, Dohnalová A. Relationship between birth weight of newborns and unsaturated fatty acids (n-3) in their blood serum. Physiol Res 1996; 45 (2): 165–168.

11. Calder PC. Polyunsaturated fatty acids, inflammation, and immunity. Lipids 2001; 36 (9): 1007–1024. doi: 10.1007/s11745-001-0812-7.

12. Tallima HE, Ridi RE. Arachidonic acid: physiological roles and potential health benefits –⁠ a review. J Adv Res 2018; 11 : 33–41. doi: 10.1016/j.jare.2018.03.003.

13. Zhang W, Zhang H, Mu H et al. Omega-3 polyunsaturated fatty acids mitigate blood–brain barrier disruption after hypoxic–ischemic brain injury. Neurobiol Dis 2016; 91 : 37–46. doi: 10.1016/j.nbd. 2016.02.007.

14. He J, Zhang P, Shen L et al. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. Int J Mol Sci 2020; 21 (17): 6356. doi: 10.3390/ijms21176356.

15. Jiang WG, Bryce RP, Horrobin DF et al. Regulation of tight junction permeability and occludin expression by polyunsaturated fatty acids. Biochem Biophys Res Commun 1998; 244 (2): 414–420. doi: 10.1006/bbrc.1998.8284.

16. Yamagata K, Tagami M, Takenaga F et al. Polyunsaturated fatty acids induce tight junctions to form in brain capillary endothelial cells. Neuroscience 2003; 116 (3): 649–656. doi: 10.1016/s0306-4522 (02) 00638-2.

17. Rohrbach S. Effects of dietary polyunsaturated fatty acids on mitochondria. Curr Pharm Des 2009; 15 (36): 4103–4116. doi: 10.2174/138161209789909684.

18. Klemmensen MM, Borrowman SH, Pearce C et al. Mitochondrial dysfunction in neurodegenerative disorders. Neurotherapeutics 2024; 21 (1): e00292.

19. Pepe S. Effect of dietary polyunsaturated fatty acids on age-related changes in cardiac mitochondrial membranes. Exp Gerontol 2005; 40 (5): 369–376. doi: 10.1016/j.exger.2005.02.002.

20. Heras-Sandoval D, Pedraza-Chaverri J, Pérez-Rojas JM. Role of docosahexaenoic acid in the modulation of glial cells in Alzheimer’s disease. J Neuroinflammation 2016; 13 (1): 61. doi: 10.1186/s12974-016-0525-5.

21. Clarke SD. Molecular mechanism for polyunsaturated fatty acid regulation of gene transcription. Am J Physiol Gastrointest Liver Physiol 2001; 281 (4): G865–G869. doi: 10.1152/ajpgi.2001.281.4.G865.

22. Clarke SD, Jump DB. Dietary polyunsaturated fatty acid regulation of gene transcription. Annu Rev Nutr 1994; 14 : 83–98. doi: 10.1146/annurev.nu.14.070194.000503.

23. Motter A, Ahern GP. TRPA1 is a polyunsaturated fatty acid sensor in mammals. PLoS One 2012; 7 (6): e38439. doi: 10.1371/journal.pone.0038439.

24. Zanetti M, Grillo A, Losurdo P et al. Omega-3 polyunsaturated fatty acids: structural and functional effects on the vascular wall. Biomed Res Int 2015; 2015 : 791978. doi: 10.1155/2015/791978.

25. Senapati S, Gragg M, Samuels IS et al. Effect of dietary docosahexaenoic acid on rhodopsin content and packing in photoreceptor cell membranes. Biochim Biophys Acta Biomembr 2018; 1860 (6): 1403–1413. doi: 10.1016/j.bbamem.2018.03.012.

26. Vrablik TL, Watts JL. Polyunsaturated fatty acid-derived signaling in reproduction and development: insig; hts from Caenorhabditis elegans and Drosophila melanogaster. Mol Reprod Dev 2013; 80 (4): 244–259. doi: 10.1002/mrd.22154.

prof. MUDr. Jaroslav Pokorný, DrSc.

Fyziologický ústav

1. LF UK

Albertov 5

128 00 Praha 2

e-mail: pokorny@lf1.cuni.cz

Labels
Addictology Paediatric psychiatry Psychiatry

Article was published in

Czech and Slovak Psychiatry

Issue 6

2025 Issue 6
Popular this week
Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#