Changes in the approach to the analysis and evaluation of inherited pathogenic TP53 variants
Authors:
B. Konečná 1; V. Krutílková 2; P. Kleiblová 1,3; L. Macůrek 4; Z. Kleibl 1,5
Authors‘ workplace:
Ústav lékařské biochemie a laboratorní diagnostiky 1. LF UK a VFN v Praze
1; Oddělení lékařské genetiky, Laboratoře AGEL a. s., Nový Jičín
2; Ústav biologie a lékařské genetiky 1. LF UK a VFN v Praze
3; Laboratoř biologie nádorových buněk, Ústav molekulární genetiky AV ČR v. v. i., Praha
4; Ústav patologické fyziologie 1. LF UK, Praha
5
Published in:
Klin Onkol 2025; 38(5): 358-367
Category:
Reviews
doi:
https://doi.org/10.48095/ccko2025358
Overview
Background: Li-Fraumeni syndrome (LFS) is a rare autosomal dominant disorder characterized by an extreme lifetime risk of multiple and early-onset tumors, driven by inherited pathogenic variants in the TP53 gene. While somatic mutations in TP53 are among the most frequent genetic alterations in cancer, germline mutations remain rare. Although LFS has long been recognized as a prototypical cancer predisposition syndrome, recent advances have significantly reshaped its diagnostic criteria and deepened our understanding of its associated cancer risks. Objective: The review illustrates the evolving diagnostic landscape of LFS and the updated indication criteria for germline TP53 testing, which have broadened the definition of the syndrome into the more inclusive entity of heritable TP53-related cancer predisposition syndrome (hTP53rc). The adoption of NGS has streamlined molecular diagnostics in hereditary cancer syndromes. Germline analysis of TP53 has become standard practice in hereditary cancer predisposition testing, even if a proband does not exhibit a LFS phenotype. However, the accurate identification of germline pathogenic TP53 variants remains challenging, particularly due to confounding factors, such as mosaicism or clonal hematopoiesis of indeterminate potential. Confirmatory testing using an independent tissue sample, along with estimation of allelic fraction is necessary to distinguish true germline variants. Another major hurdle is the assessment of the pathogenicity of rare germline TP53 variants, which requires a thorough genotype-phenotype correlation analyses. Recently, gene-specific American College of Medical Genetics and Genomics / Association for Molecular Pathology criteria have been introduced to support the classification of germline TP53 variants. Importantly, only carriers of a clearly established germline pathogenic variant should be considered for inclusion in an intensive clinical surveillance and prevention program. Conclusion: The present work underscores a paradigm shift in the understanding of one of the most significant cancer predisposition syndromes and aims to stimulate further discussion on the organization of care for high-risk carriers of pathogenic TP53 variants in the Czech Republic.
Sources
1. Chompret A. The Li-Fraumeni syndrome. Biochimie 2002; 84 (1): 75–82. doi: 10.1016/s0300-9084 (01) 01361-x.
2. Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2010; 2 (1): a001008. doi: 10.1101/cshperspect.a001008.
3. Tinka P, Pavelka Z, Vejmělková K et al. Extrémně vzácn spinální nádor na podkladě Li-Fraumeni syndromu. Oncology 2023; 17 (5): 304–307. doi: 10.36290/xon.2023.056.
4. Frebourg T, Lagercrantz SB, Oliveira C et al. Guidelines for the Li-Fraumeni and heritable TP53-related cancer syndromes. Eur J Hum Genet 2020; 28 (10): 1379–1386. doi: 10.1038/s41431-020-0638-4.
5. Fortuno C, Richardson M, Pesaran T et al. CHEK2 is not a Li-Fraumeni syndrome gene: time to update public resources. J Med Genet 2023; 60 (12): 1215–1217. doi: 10.1136/jmg-2023-109464.
6. Bougeard G, Renaux-Petel M, Flaman JM et al. Revisiting Li-Fraumeni syndrome from TP53 mutation carriers. J Clin Oncol 2015; 33 (21): 2345–2352. doi: 10.1200/JCO.2014.59.5728.
7. Li FP, Fraumeni JF. Soft-tissue sarcomas, breast cancer, and other neoplasms. A familial syndrome? Ann Intern Med 1969; 71 (4): 747–752. doi: 10.7326/0003-4819-71-4-747.
8. Li FP, Fraumeni JF, Mulvihill JJ et al. A cancer family syndrome in twenty-four kindreds. Cancer Res 1988; 48 (18): 5358–5362.
9. Malkin D, Li FP, Strong LC et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 1990; 250 (4985): 1233–1238. doi: 10.1126/science.1978757.
10. Birch JM, Hartley AL, Tricker KJ et al. Prevalence and diversity of constitutional mutations in the p53 gene among 21 Li-Fraumeni families. Cancer Res 1994; 54 (5): 1298–1304.
11. Eeles RA. Germline mutations in the TP53 gene. Cancer Surv 1995; 25 : 101–124.
12. Chompret A, Abel A, Stoppa-Lyonnet D et al. Sensitivity and predictive value of criteria for p53 germline mutation screening. J Med Genet 2001; 38 (1): 43–47. doi: 10.1136/jmg.38.1.43.
13. Bougeard G, Sesboüé R, Baert-Desurmont S et al. Molecular basis of the Li-Fraumeni syndrome: an update from the French LFS families. J Med Genet 2008; 45 (8): 535–538. doi: 10.1136/jmg.2008.057570.
14. Daly MB, Pal T, Maxwell KN et al. NCCN Guidelines Insights: genetic/familial high-risk assessment: breast, ovarian, and pancreatic, version 2.2024. J Natl Compr Canc Netw 2023; 21 (10): 1000–1010. doi: 10.6004/jnccn.2023.0051.
15. Tinat J, Bougeard G, Baert-Desurmont S et al. 2009 version of the Chompret criteria for Li Fraumeni syndrome. J Clin Oncol 2009; 27 (26): e108–e109. doi: 10.1200/JCO.2009.22.7967.
16. Foretová L, Stěrba J, Opletal P et al. Li-Fraumeni syndrome – a proposal of complex prevention care for carriers of TP53 mutation with total-body MRI. Klin Onkol 2012; 25 (Suppl): S49–S54.
17. Foretová L, Macháčková E, Gaillyová R et al. Hereditární nádorová onemocnění v klinické praxi. Praha: Grada 2022.
18. Richards S, Aziz N, Bale S et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17 (5): 405–424. doi: 10.1038/gim.2015.30.
19. Janatová M, Chvojka Š, Macháčková E et al. Classification of germline variants identified in cancer predisposition genetic testing – consensus of the CZECANCA consortium. Klin Onkol 2023; 36 (6): 431–439. doi: 10.48095/ccko2023431.
20. Fortuno C, Lee K, Olivier M et al. Specifications of the ACMG/AMP variant interpretation guidelines for germline TP53 variants. Human Mutation 2021; 42 (3): 223–236. doi: 10.1002/humu.24152.
21. Kato S, Han SY, Liu W et al. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci U S A 2003; 100 (14): 8424–8429. doi: 10.1073/pnas.14316 92100.
22. Giacomelli AO, Yang X, Lintner RE et al. Mutational processes shape the landscape of TP53 mutations in human cancer. Nat Genet 2018; 50 (10): 1381–1387. doi: 10.1038/s41588-018-0204-y.
23. Kotler E, Shani O, Goldfeld G et al. A systematic p53 mutation library links differential functional impact to cancer mutation pattern and evolutionary conservation. Mol Cell 2018; 71 (1): 178–190.e8. doi: 10.1016/j.molcel.2018.06.012.
24. The TP 53 database. [online]. Available from: https: //TP53.cancer.gov/.
25. de Andrade KC, Lee EE, Tookmanian EM et al. The TP53 database: transition from the International Agency for Research on Cancer to the US National Cancer Institute. Cell Death Differ 2022; 29 (5): 1071–1073. doi: 10.1038/s41418-022-00976-3.
26. ClinVar Database. [online]. Available from: https: //www.ncbi.nlm.nih.gov/clinvar/.
27. Šmardová K, Koptíková J. Brazilian story of the R337H p53 mutation. Klin Onkol 2014; 27 (4): 247–254. doi: 10.14735/amko2014247.
28. Andrade KC, Santiago KM, Fortes FP et al. Early-onset breast cancer patients in the South and Southeast of Brazil should be tested for the TP53 p.R337H mutation. Genet Mol Biol 2016; 39 (2): 199–202. doi: 10.1590/1678-4685-GMB-2014-0343.
29. Amadou A, Achatz MIW, Hainaut P. Revisiting tumor patterns and penetrance in germline TP53 mutation carriers: temporal phases of Li-Fraumeni syndrome. Curr Opin Oncol 2018; 30 (1): 23–29. doi: 10.1097/CCO.0000000000000423.
30. Robles AI, Harris CC. Clinical outcomes and correlates of TP53 mutations and cancer. Cold Spring Harb Perspect Biol 2010; 2 (3): a001016. doi: 10.1101/cshperspect.a001016.
31. Weisz L, Oren M, Rotter V. Transcription regulation by mutant p53. Oncogene 2007; 26 (15): 2202–2211. doi: 10.1038/sj.onc.1210294.
32. Monti P, Perfumo C, Bisio A et al. Dominant-negative features of mutant TP53 in germline carriers have limited impact on cancer outcomes. Mol Cancer Res 2011; 9 (3): 271–279. doi: 10.1158/1541-7786.MCR-10-0496.
33. Gencel-Augusto J, Lozano G. p53 tetramerization: at the center of the dominant-negative effect of mutant p53. Genes Dev 2020; 34 (17–18): 1128–1146. doi: 10.1101/gad.340976.120.
34. Foretová L, Sedláček Z, Křepelová A et al. Syndrom Li-Fraumeni – diagnostické a preventivní možnosti. Kazuistika pacientky s delecí celého genu TP53. 2010 [online]. Dostupné z: https: //www.linkos.cz/lekar-a-multidisciplinarni-tym/kongresy/po-kongresu/databaze-tuzemskych-onkologickych-konferencnich-abstrakt/syndrom-li-fraumeni-diagnosticke-a-preventivni-moznosti-kazuistika-pacientky-s-d/.
35. Steensma DP, Bejar R, Jaiswal S et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 2015; 126 (1): 9–16. doi: 10.1182/blood-2015-03-631747.
36. Weitzel JN, Chao EC, Nehoray B et al. Somatic TP53 variants frequently confound germ-line testing results. Genet Med 2018; 20 (8): 809–816. doi: 10.1038/gim. 2017.196.
37. Renaux-Petel M, Charbonnier F, Théry JC et al. Contribution of de novo and mosaic TP53 mutations to Li-Fraumeni syndrome. J Med Genet 2018; 55 (3): 173–180. doi: 10.1136/jmedgenet-2017-104976.
38. Prochazkova K, Pavlikova K, Minarik M et al. Somatic TP53 mutation mosaicism in a patient with Li-Fraumeni syndrome. Am J Med Genet A 2009; 149A (2): 206–211. doi: 10.1002/ajmg.a.32574.
39. Genovese G, Kähler AK, Handsaker RE et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 2014; 371 (26): 2477–2487. doi: 10.1056/NEJMoa1409405.
40. Mangaonkar AA, Patnaik MM. Clonal hematopoiesis of indeterminate potential and clonal cytopenias of undetermined significance: 2023 update on clinical associations and management recommendations. Am J Hematol 2023; 98 (6): 951–964. doi: 10.1002/ajh.26915.
41. Pecháčková S, Burdová K, Macůrek L. WIP1 phospahates as pharmacological target in cancer therapy. [online]. Available from: https: //link.springer.com/article/10.1007/s00109-017-1536-2.
Labels
Paediatric clinical oncology Surgery Clinical oncologyArticle was published in
Clinical Oncology
2025 Issue 5
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Possibilities of Using Metamizole in the Treatment of Acute Primary Headaches
- Obstacle Called Vasospasm: Which Solution Is Most Effective in Microsurgery and How to Pharmacologically Assist It?
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
- Metamizole vs. Tramadol in Postoperative Analgesia
Most read in this issue
- Nutrition of patients undergoing haematopoietic stem cell transplantation
- Aktuality z Národního ústavu pro výzkum rakoviny
- Cancer patients admitted to intensive care unit – a six-year retrospective analysis
- Changes in the approach to the analysis and evaluation of inherited pathogenic TP53 variants