#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Interactions (not only between genes and the environment) and cardiovascular disease


Authors: Jaroslav A. Hubáček 1,2
Authors‘ workplace: Centrum experimentální medicíny IKEM, Praha 1;  III. interní klinika – endokrinologie a metabolismu 1. LF UK a VFN v Praze 2
Published in: AtheroRev 2025; 10(3): 178-182
Category: Reviews

Overview

Despite intensive research and extensive analysis, we are still unable to satisfactorily predict the risk of cardiovascular disease (CVD). One issue may be the way the risk is calculated, based solely on simple additive models. However, individual risk factors often interact with each other –⁠ the effect of an identical risk factor is not the same for everyone, but depends on the presence of other risk factor. Interactions between genes and diet (nutrigenetics) are often described and well documented. For example, the risk associated with some PCSK9, ANRIL (a marker at 9p21 locus) or APOA5 alleles is significantly dependent on dietary habits. Significant interactions have also been observed in relation to sex –⁠ obesity poses a much greater risk to men than to women, whereas smoking increases the risk of CVD much more in women. However, obesity and smoking do not interact –⁠ an additive model applies here when modelling CVD risk. A limitation of interaction studies is the quality of the input lifestyle data –⁠ such studies are generally less replicable than analyses based on objective, laboratory data. Nevertheless, it is evident that the analysis of inter-individual interactions should become standard in perso­­nalised medicine.

Keywords:

polymorphism – lifestyle – cardiovascular disease (CVD) – interaction


Sources

Literatura (citovaná)

Wang HF, Mao YC, Qi SF et al. Benefits and risks of antihyperlipidemic medication in adults with different low-density lipoprotein cholesterol based on the number needed to treat. Am J Cardiovasc Drugs 2024; 24(4): 557–568. Dostupné z DOI: <http://dx.doi.org/10.1007/s40256–024–00651–7>.

Hubáček JA, Vrablík M. Genetika dyslipidemií včera, dnes a zítra. Vnitř Lék 2007; 53(4): 371–376.

Hartiala JA, Hilser JR, Biswas S et al. Gene-environment interactions for cardiovascular disease. Curr Atheroscler Rep 2021; 23(12): 75. Dostupné z DOI: <http://dx.doi.org/10.1007/s11883–021–00974–9>.

Peña-Romero AC, Navas-Carrillo D, Marín F et al. The future of nutrition: Nutrigenomics and nutrigenetics in obesity and cardiovascular diseases. Crit Rev Food Sci Nutr 2018; 58(17): 3030–3041. Dostupné z DOI: <http://dx.doi.org/10.1080/10408398.2017.1349731>.

Shorbaji A, Pushparaj PN, Al-Ghafari AB et al. A narrative review of research advancements in pharmacogenetics of cardiovascular disease and impact on clinical implications. NPJ Genom Med 2025; 10(1): 54. Dostupné z DOI: <http://dx.doi.org/10.1038/s41525–025–00511–6>.

Hubacek JA, Pitha J, Skodova Z et al. Polymorphisms in CYP-7A1, not APOE, influence the change in plasma lipids in response to population dietary change in an 8 year follow-up; results from the Czech MONICA study. Clin Biochem 2003; 36(4): 263–267. Dostupné z DOI: <http://dx.doi.org/10.1016/s0009–9120(03)00025–0>.

Kovar J, Suchanek P, Hubacek JA et al. The A-204C polymorphism in the cholesterol 7alpha-hydroxylase (CYP7A1) gene determines the cholesterolemia responsiveness to a high-fat diet. Physiol Res 2004; 53(5): 565–568.

Lai CQ, Corella D, Demissie S et al. Dietary intake of n-6 fatty acids modulates effect of apolipoprotein A5 gene on plasma fasting triglycerides, remnant lipoprotein concentrations, and lipoprotein particle size: the Framingham Heart Study. Circulation 2006; 113(17): 2062–2070. Dostupné z DOI: <http://dx.doi.org/10.1161/CIRCULATIONAHA.105.577296>.

Palomaki GE, Melillo S, Bradley LA. Association between 9p21 genomic markers and heart disease: a meta-analysis. JAMA 2010; 303(7): 648–656. Dostupné z DOI: <http://dx.doi.org/10.1001/jama.2010.118>.

Do R, Xie C, Zhang X et al. The effect of chromosome 9p21 variants on cardiovascular disease may be modified by dietary intake: evidence from a case/control and a prospective study. PLoS Med 2011; 8(10): e1001106. Dostupné z DOI: <http://dx.doi.org/10.1371/journal.pmed.1001106>.

Zheng Y, Li Y, Huang T et al. Sugar-sweetened beverage intake, chromosome 9p21 variants, and risk of myocardial infarction in Hispanics. Am J Clin Nutr 2016; 103(4): 1179–1184. Dostupné z DOI: <http://dx.doi.org/10.3945/ajcn.115.107177>.

Yu Z, Huang T, Zheng Y et al. PCSK9 variant, long-chain n-3 PUFAs, and risk of nonfatal myocardial infarction in Costa Rican Hispanics. Am J Clin Nutr 2017; 105(5): 1198–1203. Dostupné z DOI: <http://dx.doi.org/10.3945/ajcn.116.148106>.

Cornelis MC, El-Sohemy A, Campos H. GSTT1 genotype modifies the association between cruciferous vegetable intake and the risk of myocardial infarction. Am J Clin Nutr 2007; 86(3): 752–758. Dostupné z DOI: <http://dx.doi.org/10.1093/ajcn/86.3.752>.

Hubacek JA, Lanska V, Skodova Z et al. Sex-specific interaction between APOE and APOA5 variants and determination of plasma lipid levels. Eur J Hum Genet 2008; 16(1): 135–138. Dostupné z DOI: <http://dx.doi.org/10.1038/sj.ejhg.5201941>.

Lucas G, Lluís-Ganella C, Subirana I et al. Hypothesis-based analysis of gene-gene interactions and risk of myocardial infarction. PLoS One 2012; 7(8): e41730. Dostupné z DOI: <http://dx.doi.org/10.1371/journal.pone.0041730>.

Zee RY, Cook NR, Cheng S et al. Multi-locus candidate gene polymorphisms and risk of myocardial infarction: a population-based, prospective genetic analysis. J Thromb Haemost 2006; 4(2): 341–348. Dostupné z DOI: <http://dx.doi.org/10.1111/j.1538–7836.2006.01754.x>.

Musameh MD, Wang WY, Nelson CP et al. Analysis of gene-gene interactions among common variants in candidate cardiovascular genes in coronary artery disease. PLoS One 2015; 10(2): e0117684. Dostupné z DOI: <http://dx.doi.org/10.1371/journal.pone.0117684>.

Borgeraas H, Hertel JK, Svingen GF et al. Association of body mass index with risk of acute myocardial infarction and mortality in Norwegian male and female patients with suspected stable angina pectoris: a prospective cohort study. BMC Cardiovasc Disord 2014; 14 : 68. Dostupné z DOI: <http://dx.doi.org/10.1186/1471–2261–14–68>.

Srikanthan P, Horwich TB, Calfon Press M et al. Sex differences in the association of body composition and cardiovascular mortality. J Am Heart Assoc 2021; 10(5): e017511. Dostupné z DOI: <http://dx.doi.org/10.1161/JAHA.120.017511>.

Prescott E, Hippe M, Schnohr P et al. Smoking and risk of myocardial infarction in women and men: longitudinal population study. BMJ 1998; 316(7137): 1043–1047. Dostupné z DOI: <http://dx.doi.org/10.1136/bmj.316.7137.1043>.

Dicker D, Feldman BS, Leventer-Roberts M et al. Obesity or smoking: Which factor contributes more to the incidence of myocardial infarction? Eur J Intern Med 2016; 32 : 43–46. Dostupné z DOI: <http://dx.doi.org/10.1016/j.ejim.2016.03.029>.

Delaney JA, Daskalopoulou SS, Brophy JM et al. Lifestyle variables and the risk of myocardial infarction in the general practice research database. BMC Cardiovasc Disord 2007; 7 : 38. Dostupné z DOI: <http://dx.doi.org/10.1186/1471–2261–7-38>.

Luijckx E, Lohse T, Faeh D et al. Joints effects of BMI and smoking on mortality of all-causes, CVD, and cancer. Cancer Causes Control 2019; 30(5): 549–557. Dostupné z DOI: <http://dx.doi.org/10.1007/s10552–019–01160–8>.

Ding D, Van Buskirk J, Partridge S et al. The association of diet quality and physical activity with cardiovascular disease and mortality in 85,545 older Australians: A longitudinal study. J Sport Health Sci 2024; 13(6): 841–850. Dostupné z DOI: <http://dx.doi.org/10.1016/j.jshs.2024.05.011>.

Suchanek P, Poledne R, Hubacek JA. Dietary intake reports fidelity –⁠ fact or fiction? Neuro Endocrinol Lett 2011; 32(Suppl 2): 29–31.

Vrablik M, Dlouha D, Todorovova V et al. Genetics of cardiovascular disease: How far are we from personalized CVD risk prediction and management? Int J Mol Sci 2021; 22(8): 4182. Dostupné z DOI: <http://dx.doi.org/10.3390/ijms22084182>.

Reinikainen J, Laatikainen T, Karvanen J et al. Lifetime cumulative risk factors predict cardiovascular disease mortality in a 50-year follow-up study in Finland. Int J Epidemiol 2015; 44(1): 108–116. Dostupné z DOI: <http://dx.doi.org/10.1093/ije/dyu235>.

Hubáček JA. Rizikové faktory, jejich celoživotní expozice a trajektorie –⁠ nový směr v odhadu rizika ASKVO. AtheroRev 2022; 7(2): 71–75. Dostupné z WWW: <www.atheroreview.eu/casopisy/athero-review/2022–2-22/rizikove-faktory-jejich-celozivotni-expozice-a-trajektorie-novy-smer-v-odhadu-rizika-askvo-131275>.

Literatura (základní doporučená)

Heianza Y, Qi L. Impact of genes and environment on obesity and cardiovascular disease. Endocrinology 2019; 160(1): 81–100. Dostupné z DOI: <http://dx.doi.org/10.1210/en.2018–00591>.

Joseph PG, Pare G, Anand SS. Exploring gene-environment relationships in cardiovascular disease. Can J Cardiol 2013; 29(1): 37–45. Dostupné z DOI: <http://dx.doi.org/10.1016/j.cjca.2012.10.009>.

Lanktree MB, Hegele RA. Gene-gene and gene-environment interactions: new insights into the prevention, detection and management of coronary artery disease. Genome Med 2009; 1(2): 28. Dostupné z DOI: <http://dx.doi.org/10.1186/gm28>.

Voruganti VS. Nutritional genomics of cardiovascular disease. Curr Genet Med Rep 2018; 6(2): 98–106. Dostupné z DOI: <http://dx.doi.org/10.1007/s40142–018–0143-z>.

Labels
Angiology Diabetology Internal medicine Cardiology General practitioner for adults

Article was published in

Athero Review

Issue 3

2025 Issue 3
Popular this week
Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#