#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Sialidases Affect the Host Cell Adherence and Epsilon Toxin-Induced Cytotoxicity of Type D Strain CN3718


Clostridium perfringens type B or D isolates, which cause enterotoxemias or enteritis in livestock, produce epsilon toxin (ETX). ETX is exceptionally potent, earning it a listing as a CDC class B select toxin. Most C. perfringens strains also express up to three different sialidases, although the possible contributions of those enzymes to type B or D pathogenesis remain unclear. Type D isolate CN3718 was found to carry two genes (nanI and nanJ) encoding secreted sialidases and one gene (nanH) encoding a cytoplasmic sialidase. Construction in CN3718 of single nanI, nanJ and nanH null mutants, as well as a nanI/nanJ double null mutant and a triple sialidase null mutant, identified NanI as the major secreted sialidase of this strain. Pretreating MDCK cells with NanI sialidase, or with culture supernatants of BMC206 (an isogenic CN3718 etx null mutant that still produces sialidases) enhanced the subsequent binding and cytotoxic effects of purified ETX. Complementation of BMC207 (an etx/nanH/nanI/nanJ null mutant) showed this effect is mainly attributable to NanI production. Contact between BMC206 and certain mammalian cells (e.g., enterocyte-like Caco-2 cells) resulted in more rapid sialidase production and this effect involved increased transcription of BMC206 nanI gene. BMC206 was shown to adhere to some (e.g. Caco-2 cells), but not all mammalian cells, and this effect was dependent upon sialidase, particularly NanI, expression. Finally, the sialidase activity of NanI (but not NanJ or NanH) could be enhanced by trypsin. Collectively these in vitro findings suggest that, during type D disease originating in the intestines, trypsin may activate NanI, which (in turn) could contribute to intestinal colonization by C. perfringens type D isolates and also increase ETX action.


Vyšlo v časopise: Sialidases Affect the Host Cell Adherence and Epsilon Toxin-Induced Cytotoxicity of Type D Strain CN3718. PLoS Pathog 7(12): e32767. doi:10.1371/journal.ppat.1002429
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002429

Souhrn

Clostridium perfringens type B or D isolates, which cause enterotoxemias or enteritis in livestock, produce epsilon toxin (ETX). ETX is exceptionally potent, earning it a listing as a CDC class B select toxin. Most C. perfringens strains also express up to three different sialidases, although the possible contributions of those enzymes to type B or D pathogenesis remain unclear. Type D isolate CN3718 was found to carry two genes (nanI and nanJ) encoding secreted sialidases and one gene (nanH) encoding a cytoplasmic sialidase. Construction in CN3718 of single nanI, nanJ and nanH null mutants, as well as a nanI/nanJ double null mutant and a triple sialidase null mutant, identified NanI as the major secreted sialidase of this strain. Pretreating MDCK cells with NanI sialidase, or with culture supernatants of BMC206 (an isogenic CN3718 etx null mutant that still produces sialidases) enhanced the subsequent binding and cytotoxic effects of purified ETX. Complementation of BMC207 (an etx/nanH/nanI/nanJ null mutant) showed this effect is mainly attributable to NanI production. Contact between BMC206 and certain mammalian cells (e.g., enterocyte-like Caco-2 cells) resulted in more rapid sialidase production and this effect involved increased transcription of BMC206 nanI gene. BMC206 was shown to adhere to some (e.g. Caco-2 cells), but not all mammalian cells, and this effect was dependent upon sialidase, particularly NanI, expression. Finally, the sialidase activity of NanI (but not NanJ or NanH) could be enhanced by trypsin. Collectively these in vitro findings suggest that, during type D disease originating in the intestines, trypsin may activate NanI, which (in turn) could contribute to intestinal colonization by C. perfringens type D isolates and also increase ETX action.


Zdroje

1. McClaneBA 2007 Clostridium perfringens. DoyleMPBeuchatLR Food Microbiology. 3rd edition Washington, D.C. ASM press 423 444

2. HathewayC 1990 Toxigenic clostridia. Clin Microb Rev 3 66 76

3. McDonelJL 1986 Toxins of Clostridium perfringens types A, B, C, D, and E. DornerFDrewsH Pharmacology of Bacterial Toxins Oxford Pergamon Press 477 517

4. PetitLGilbertMPopoffMR 1999 Clostridium perfringens: toxinotype and genotype. Trends Microbiol 7 104 110

5. SayeedSFernandez-MiyakawaMEFisherDJAdamsVPoonR 2005 Epsilon-toxin is required for most Clostridium perfringens type D vegetative culture supernatants to cause lethality in the mouse intravenous injection model. Infect Immun 73 7413 7421

6. Fernandez-MiyakawaMEFisherDJPoonRSayeedSAdamsV 2007 Both epsilon-toxin and beta-toxin are important for the lethal properties of Clostridium perfringens type B isolates in the mouse intravenous injection model. Infect Immun 75 1443 1452

7. RoodJI 1998 Virulence genes of Clostridium perfringens. Ann Review Microbiol 52 333 360

8. UzalFASongerG 2008 Diagnosis of Clostridium perfringens intestinal infections in sheep and goat. J Vet Diagn Invest 20 253 265

9. PopoffMR 2011 Epsilon toxin: a fascinating pore-forming toxin. FEBS J (in press) doi:10.1111/j.1742-4658.2011.08145.x

10. ColeARGibertMPopoffMMossDSTitballRW 2004 Clostridium perfringens epsilon-toxin shows structural similarity to the pore-forming toxin aerolysin. Nat Struct Mol Biol 11 797 798

11. Bokori-BrownMSavvaGCFernandes da CostaSPNaylorCEBasakAK 2011 Molecular basis of toxicity of Clostridium perfringens epsilon toxin. FEBS J (in press) doi:10.1111/j.1742-4658.2011.08140.x

12. MiyataSMinamiJTamiaEMatsushitaPShimamotoS 2002 Clostridium perfringens epsilon-toxin forms a hepatmeric pore within the detergent-insoluble microdomains of Madin-Darby canine kidney cells and rat synaptosomes. J Biol Chem 277 39463 39468

13. RobertsonSLLiJUzalFAMcClaneBA 2011 Evidence for a prepore stage in the action of Clostridium perfringens epsilon toxin. PLoS One 6 e22053

14. MyersGSRaskoDACheungJKRavelJSeshadriR 2006 Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens. Genome Res 16 1031 1040

15. LyristisMBryantAESloanJAwadMMNisbetIT 1994 Identification and molecular analysis of a locus that regulates extracellular toxin production in Clostridium perfringens. Molec Microbiol 12 761 777

16. ShimizuTOhtaniKHirakawaHOhshimaKYamashitaA 2002 Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc Natl Acad Sci U S A 99 996 1001

17. BorastonABFicko-BleanEHealeyM 2007 Carbohydrate recognition by a large sialidase toxin from Clostridium perfringens. Biochemistry 46 11352 11360

18. GalenJEKetleyJMFasanoARichardsonSHWassermanSS 1992 Role of Vibrio cholerae neuraminidase in the function of cholera toxin. Infect Immun 60 406 415

19. KingSJ 2010 Pneumococcal modification of host sugars: a major contributor to colonization of the human airway. Mol Oral Microbiol 25 15 24

20. ChiarezzaMLyrasDPidotSJFlore-DiazMAwadMM 2009 The NanI and NanJ sialidases of Clostridium perfringens are not essential for virulence. Infect Immun 77 4421 4428

21. ShimanotoSTamaiEMatsushitaOMinamiJOkabeA 2005 Changes in ganglioside content affect the binding of Clostridium perfringens epsilon-toxin to detergent-resistant membranes of Madin-Darby canine kidney cells. Microbiol Immunol 49 245 253

22. NagahamaMSakuraiJ 1992 High-affinity binding of Clostridium perfingens epsilon-toxin to rat brain. Infect Immun 60 1237 1240

23. PetitLGibertMGilletDLaurent-WinterCBoquetP 1997 Clostridium perfringens epsilon toxin acts on MDCK cells by forming a large membrane complex. J Bacteriol 179 6480 6487

24. ChenYMcClaneBAFisherDJRoodJIGuptaP 2005 Construction of an alpha toxin gene knockout mutant of Clostridium perfringens type A by use of a mobile group II intron. Appl Environ Microbiol 71 7542 7547

25. SayeedSUzalFAFisherDJSaputoJVidalJE 2008 Beta toxin is essential for the intestinal virulence of Clostridium perfringens type C disease isolate CN3685 in a rabbit ileal loop model. Molec Microbiol 67 15 30

26. HonmaKMishimaESharmaA 2010 Role of Tannerella forsythia NanH sialidase in epithelial cell attachment. Infect Immun: 79 393 401

27. JostBHBillingtonSJTrinhHTSongerJG 2006 Association of genes encoding beta2 toxin and a collagen binding protein in Clostridium perfringens isolates of porcine origin. Vet Microbiol 115 173 182

28. RodgersKArvisonCGMelvilleSB 2011 Expression of a Clostridium perfringens type IV pilin by Neisseria gonorrhoeae mediates adherence to muscle cells. Infect Immun 79 3096 3105

29. HunterSECClarkeINKelleyDCTitballRW 1992 Cloning and nucleotide sequencing of the Clostridium perfringens epsilon-toxin gene and its expression in Escherichia coli. Infect Immun 60 102 110

30. Fernandez-MiyakawaMEUzalFA 2003 The early effects of Clostridium perfringens type D epsilon toxin in ligated intestinal loops of goats and sheep. Vet Res Commun 27 231 241

31. Kokai-KunJFSongerJGCzeczulinJRChenFMcClaneBA 1994 Comparison of Western immunoblots and gene detection assays for identification of potentially enterotoxigenic isolates of Clostridium perfringens. J Clin Microbiol 32 2533 2539

32. LiJMcClaneBA 2006 Further comparison of temperature effects on growth and survival of Clostridium perfringens type A isolates carrying a chromosomal or plasmid-borne enterotoxin gene. Appl Environ Microbiol 72 4561 4568

33. MiyamotoKFisherDJLiJAkimotoSMcClaneBA 2006 Complete sequencing and diversity analysis of the enterotoxin-encoding plasmids in Clostridium perfringens type A non-food-borne human gastrointestinal disease isolates. J Bacteriol 188 1585 1598

34. SayeedSLiJMcClaneBA 2010 Characterization of virulence plasmid diversity among Clostridium perfringens type B isolates. Infect Immun 78 495 504

35. GurjarALiJMcClaneBA 2010 Characterization of toxin plasmids in Clostridium perfringens type C isolates. Infect Immun 78 4860 4869

36. SayeedSLiJMClaneBA 2007 Virulence plasmid diversity in Clostridium perfringens type D isolates. Infect Immun 75 2391 2398

37. BannamTLRoodJI 1993 Clostridium perfringens-Escherichia coli shuttle vectors that carry single antibiotic resistance determinants. Plasmid 29 223 235

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Eozinofilní granulomatóza s polyangiitidou
nový kurz
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#