#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Biofilm Development on by Is Facilitated by Quorum Sensing-Dependent Repression of Type III Secretion


Yersinia pseudotuberculosis forms biofilms on Caenorhabditis elegans which block nematode feeding. This genetically amenable host-pathogen model has important implications for biofilm development on living, motile surfaces. Here we show that Y. pseudotuberculosis biofilm development on C. elegans is governed by N-acylhomoserine lactone (AHL)-mediated quorum sensing (QS) since (i) AHLs are produced in nematode associated biofilms and (ii) Y. pseudotuberculosis strains expressing an AHL-degrading enzyme or in which the AHL synthase (ypsI and ytbI) or response regulator (ypsR and ytbR) genes have been mutated, are attenuated. Although biofilm formation is also attenuated in Y. pseudotuberculosis strains carrying mutations in the QS-controlled motility regulator genes, flhDC and fliA, and the flagellin export gene, flhA, flagella are not required since fliC mutants form normal biofilms. However, in contrast to the parent and fliC mutant, Yop virulon proteins are up-regulated in flhDC, fliA and flhA mutants in a temperature and calcium independent manner. Similar observations were found for the Y. pseudotuberculosis QS mutants, indicating that the Yop virulon is repressed by QS via the master motility regulator, flhDC. By curing the pYV virulence plasmid from the ypsI/ytbI mutant, by growing YpIII under conditions permissive for type III needle formation but not Yop secretion and by mutating the type III secretion apparatus gene, yscJ, we show that biofilm formation can be restored in flhDC and ypsI/ytbI mutants. These data demonstrate that type III secretion blocks biofilm formation and is reciprocally regulated with motility via QS.


Vyšlo v časopise: Biofilm Development on by Is Facilitated by Quorum Sensing-Dependent Repression of Type III Secretion. PLoS Pathog 7(1): e32767. doi:10.1371/journal.ppat.1001250
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001250

Souhrn

Yersinia pseudotuberculosis forms biofilms on Caenorhabditis elegans which block nematode feeding. This genetically amenable host-pathogen model has important implications for biofilm development on living, motile surfaces. Here we show that Y. pseudotuberculosis biofilm development on C. elegans is governed by N-acylhomoserine lactone (AHL)-mediated quorum sensing (QS) since (i) AHLs are produced in nematode associated biofilms and (ii) Y. pseudotuberculosis strains expressing an AHL-degrading enzyme or in which the AHL synthase (ypsI and ytbI) or response regulator (ypsR and ytbR) genes have been mutated, are attenuated. Although biofilm formation is also attenuated in Y. pseudotuberculosis strains carrying mutations in the QS-controlled motility regulator genes, flhDC and fliA, and the flagellin export gene, flhA, flagella are not required since fliC mutants form normal biofilms. However, in contrast to the parent and fliC mutant, Yop virulon proteins are up-regulated in flhDC, fliA and flhA mutants in a temperature and calcium independent manner. Similar observations were found for the Y. pseudotuberculosis QS mutants, indicating that the Yop virulon is repressed by QS via the master motility regulator, flhDC. By curing the pYV virulence plasmid from the ypsI/ytbI mutant, by growing YpIII under conditions permissive for type III needle formation but not Yop secretion and by mutating the type III secretion apparatus gene, yscJ, we show that biofilm formation can be restored in flhDC and ypsI/ytbI mutants. These data demonstrate that type III secretion blocks biofilm formation and is reciprocally regulated with motility via QS.


Zdroje

1. NavarroL

AltoNM

DixonJE

2005 Functions of the Yersinia effector proteins in inhibiting host immune responses. Curr Opin Microbiol 8 21 27

2. CornelisGR

2002 Yersinia type III secretion: send in the effectors. J Cell Biol 158 401 408

3. GalanJE

Wolf-WatzH

2006 Protein delivery into eukaryotic cells by type III secretion machines. Nature 444 567 573

4. RamamurthiKS

SchneewindO

2002 Type III protein secretion in Yersinia species. Annu Rev Cell Dev Biol 18 107 133

5. DarbyC

HsuJW

GhoriN

FalkowS

2002 Caenorhabditis elegans - Plague bacteria biofilm blocks food intake. Nature 417 243 244

6. JoshuaGWP

KarlyshevAV

SmithMP

IsherwoodKE

TitballRW

2003 A Caenorhabditis elegans model of Yersinia infection: biofilm formation on a biotic surface. Microbiology-Sgm 149 3221 3229

7. HinnebuschBJ

PerryRD

SchwanTG

1996 Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 273 367 370

8. StoodleyP

SauerK

DaviesDG

CostertonJW

2002 Biofilms as complex differentiated communities. Annu Rev Microbiol 56 187 209

9. JarrettCO

DeakE

IsherwoodKE

OystonPC

FischerER

2004 Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J Infect Dis 190 783 792

10. PlattHM

1994 Forward in Phylogenetic systematics of free-living nematodes.

LorenzenS

London The Ray Society i ii

11. MatzC

KjellebergS

2005 Off the hook - how bacteria survive protozoan grazing. Trends Microbiol 13 302 307

12. TanL

DarbyC

2004 A movable surface: Formation of Yersinia sp biofilms on motile Caenorhabditis elegans. J Bacteriol 186 5087 5092

13. SalmondGPC

BycroftBW

StewartGSAB

WilliamsP

1995 The bacterial enigma-cracking the code of cell-cell communication. Mol Microbiol 16 615 624

14. WilliamsP

CámaraM

HardmanA

SwiftS

MiltonD

2000 Quorum sensing and the population-dependent control of virulence. Philos T Roy Soc B 355 667 680

15. SwiftS

DownieJA

WhiteheadNA

BarnardAML

SalmondGPC

WilliamsP

2001 Quorum sensing as a population-density-dependent determinant of bacterial physiology. Adv Microb Phys 45 199 270

16. CámaraM

WilliamsP

HardmanA

2002 Controlling infection by tuning in and turning down the volume of bacterial small-talk. Lancet Infect Dis 2 667 676

17. WilliamsP

WinzerK

ChanWC

CámaraM

2007 Look who's talking: communication and quorum sensing in the bacterial world. Philos T Roy Soc B 362 1119 1134

18. AtkinsonS

ThroupJP

StewartGSAB

WilliamsP

1999 A hierarchical quorum sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Mol Microbiol 33 1267 1277

19. AtkinsonS

ChangCY

PatrickHL

BuckleyCMF

WangY

2008 Functional interplay between the Yersinia pseudotuberculosis YpsRI and YtbRI quorum sensing systems modulates swimming motility by controlling expression of flhDC and fliA. Mol Microbiol 69 137 151

20. AtkinsonS

ChangCY

SockettRE

CámaraM

WilliamsP

2006 Quorum sensing in Yersinia enterocolitica controls swimming and swarming motility. J Bacteriol 188 1451 1461

21. KirwanJP

GouldTA

SchweizerHP

BeardenSW

MurphyRC

2006 Quorum-sensing signal synthesis by the Yersinia pestis acyl homoserine lactone synthase YspI. J Bacteriol 188 784 788

22. SwiftS

IsherwoodKE

AtkinsonS

OystonP

StewartGSAB

1999 Quorum sensing in Aeromonas and Yersinia.

EnglandR

HobbsG

BaintonNJ

RobertsDM

Microbial Signalling and Communication Cambridge, UK Cambridge University Press 85 104

23. IsherwoodEK

2001 Quorum sensing in Yersinia pestis. PhD thesis The University of Nottingham

24. YoungGM

2004 Flagella:Organelles for motility and protein secretion.

CarnielE

HinnebuschBJ

Yersinia molecular and cellular biology Wymondham Horizon bioscience 243 256

25. CharltonTS

de NysR

NettingA

KumarN

HentzerM

2000 A novel and sensitive method for the quantification of N-3-oxoacyl homoserine lactones using gas chromatography-mass spectrometry: application to a model bacterial biofilm. Environ Microbiol 2 530 541

26. LynchMJ

SwiftS

KirkeDF

KeevilCW

DoddCER

2002 The regulation of biofilm development by quorum sensing in Aeromonas hydrophila. Environ Microbiol 4 18 28

27. AtkinsonS

CámaraM

WilliamsP

2007 N-Acylhomoserine lactones, quorum sensing and biofilm development in Gram-negative bacteria.

KjellbergS

GivskovM

The biofilm mode of life. Mechanisms and adaptations Wymondham Horizon bioscience 95 122

28. BjarnsholtT

JensenPO

BurmolleM

HentzerM

HaagensenJAJ

2005 Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology-Sgm 151 373 383

29. JensenPO

BjarnsholtT

PhippsR

RasmussenTB

CalumH

2007 Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology-Sgm 153 1329 1338

30. Allesen-HolmM

BarkenKB

YangL

KlausenM

WebbJS

2006 A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59 1114 1128

31. McCleanKH

WinsonMK

FishL

TaylorA

ChhabraSR

1997 Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology-Uk 143 3703 3711

32. AndersenJB

HeydornA

HentzerM

EberlL

GeisenbergerO

2001 gfp-based N-acyl homoserine-lactone sensor systems for detection of bacterial communication. Appl Environ Microbiol 67 575 585

33. RocheDM

ByersJT

SmithDS

GlansdorpFG

SpringDR

2004 Communications blackout? Do N-acylhomoserine lactone-degrading enzymes have any role in quorum sensing? Microbiology-Sgm 150 2023 2028

34. YoungGM

SchmielDH

MillerVL

1999 A new pathway for the secretion of virulence factors by bacteria: The flagellar export apparatus functions as a protein-secretion system. Proc Natl Acad Sci U S A 96 6456 6461

35. Saijo-HamanoY

ImadaK

MinaminoT

KiharaM

ShimadaM

2010 Structure of the cytoplasmic domain of FlhA and implication for flagellar type III protein export. Mol Microbiol 76 260 268

36. Silva-HerzogE

FerracciF

JacksonMW

JosephSS

PlanoGV

2008 Membrane localization and topology of the Yersinia pestis YscJ lipoprotein. Microbiology-Sgm 154 593 607

37. MarenneMN

MotaLJ

CornelisGR

2004 The pYV plasmid and the Ysc-Yop Type III secretion system.

CarnielE

HinnebuschBJ

Yersinia molecular and cellular biology Wymondham Horizon Bioscience 319 348

38. O'TooleG

KaplanHB

KolterR

2000 Biofilm formation as microbial development. Annu Rev Microbiol 54 49 79

39. KjellebergS

MolinS

2002 Is there a role for quorum sensing signals in bacterial biofilms? Curr Opin Microbiol 5 254 258

40. SauerK

CamperAK

EhrlichGD

CostertonJW

DaviesDG

2002 Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184 1140 1154

41. KlausenM

Aes-JorgensenA

MolinS

Tolker-NielsenT

2003 Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 50 61 68

42. WebbJS

ThompsonLS

JamesS

CharltonT

Tolker-NielsenT

2003 Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol 185 4585 4592

43. TanL

DarbyC

2006 Yersinia pestis YrbH is a multifunctional protein required for both 3-deoxy-D-manno-oct-2-ulosonic acid biosynthesis and biofilm formation. Mol Microbiol 61 861 870

44. SizemoreRK

CaldwellJJ

KendrickAS

1990 Alternate Gram staining technique using a fluorescent lectin. Appl Environ Microbiol 56 2245 2247

45. BobrovAG

KirillinaO

FormanS

MackD

PerryRD

2008 Insights into Yersinia pestis biofilm development: topology and co-interaction of Hms inner membrane proteins involved in exopolysaccharide production. Environmental Microbiology 10 1419 1432

46. DraceK

DarbyC

2008 The hmsHFRS operon of Xenorhabdus nematophila is required for biofilm attachment to Caenorhabditis elegans. Appl Environ Microbiol 74 4509 4515

47. SunYC

HinnebuschBJ

DarbyC

2008 Experimental evidence for negative selection in the evolution of a Yersinia pestis pseudogene. Proc Natl Acad Sci U S A 105 8097 8101

48. SunYC

KoumoutsiA

DarbyC

2009 The response regulator PhoP negatively regulates Yersinia pseudotuberculosis and Yersinia pestis biofilms. FEMS Microbiol Lett 290 85 90

49. KirillinaO

FetherstonJD

BobrovAG

AbneyJ

PerryRD

2004 HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol Microbiol 54 75 88

50. SimmR

FetherstonJD

KaderA

RomlingU

PerryRD

2005 Phenotypic convergence mediated by GGDEF-domain-containing proteins. J Bacteriol 187 6816 6823

51. BobrovAG

KirillinaO

PerryRD

2007 Regulation of biofilm formation in Yersinia pestis. Adv Exp Med Biol 603 201 210

52. JacobiCA

BachA

EberlL

SteidleA

HeesemannJ

2003 Detection of N-(3-oxohexanoyl)-L-homoserine lactone in mice infected with Yersinia enterocolitica serotype O8. Infect Immun 71 6624 6626

53. PrattLA

KolterR

1998 Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30 285 293

54. O'TooleGA

KolterR

1998 Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30 295 304

55. HossainMM

TsuyumuS

2006 Flagella-mediated motility is required for biofilm formation by Erwinia carotovora subsp. carotovora. J Gen Plant Pathol 72 34 39

56. KimTJ

YoungBM

YoungGM

2008 Effect of flagellar mutations on Yersinia enterocolitica biofilm formation. Appl Environ Microbiol 74 5466 5474

57. Gomez-GomezL

BollerT

2002 Flagellin perception: a paradigm for innate immunity. Trends in Plant Sci 7 251 256

58. BlevesS

MarenneMN

DetryG

CornelisGR

2002 Up-regulation of the Yersinia enterocolitica yop regulon by deletion of the flagellum master operon flhDC. J Bacteriol 184 3214 3223

59. T

WattiauP

BrasseurR

RuysschaertJM

CornelisG

1990 Secretion of Yop Proteins by Yersiniae. Infect Immun 58 2840 2849

60. BrubakerRR

SurgallaMJ

1964 Effect of Ca2+ and Mg2+ on lysis growth and production of virulence antigens. J Infect Dis 114 13 25

61. BolinI

Wolf-WatzH

1984 Molecular cloning of the temperature inducible outer membrane protein-1 of Yersinia pseudotuberculosis. Infect Immun 43 72 78

62. BolinI

PortnoyDA

WatzHW

1985 Expression of the Temperature inducible outer membrane proteins of Yersiniae. Infect Immun 48 234 240

63. ForsbergA

ViitanenAM

SkurnikM

Wolf-WatzH

1991 The surface located YopN protein is involved in calcium signal transduction in Yersinia pseudotuberculosis. Mol Microbiol 5 977 986

64. DraceK

McLaughlinS

DarbyC

2009 Caenorhabditis elegans BAH-1 is a DUF23 protein expressed in seam cells and required for microbial biofilm binding to the cuticle. Plos One 4 e6741

65. DarbyC

ChakrabortiA

PolitzSM

DanielsCC

TanL

2007 Caenorhabditis elegans mutants resistant to attachment of Yersinia biofilms. Genetics 176 221 230

66. QaziSNA

ReesCED

MellitsKH

HillPJ

2001 Development of gfp vectors for expression in Listeria monocytogenes and other low G+C Gram-positive bacteria. Microb Ecol 41 301 309

67. LennoxES

1955 Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1 190 206

68. YatesEA

PhilippB

BuckleyC

AtkinsonS

ChhabraSR

2002 N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 70 5635 5646

69. RileyG

TomaS

1989 Detection of pathogenic Yersinia enterocolitica by using congo red-magnesium oxalate agar medium. J Clin Microbiol 27 213 214

70. LewisJA

FlemingTJ

1995 Caenorhabditis elegans: Modern biological analysis of an organism. New York Academic Press 3 39

71. TarrSAJ

1972 The assesment of disease incidence and crop loss. London The Macmillan Press 430 454 In: Principles of plant pathology.

72. VilainS

PretoriusJM

TheronJ

BrozelVS

2009 DNA as an adhesin: Bacillus cereus requires extracellular DNA to form biofilms. Appl Environ Microbiol 75 2861 2868

73. BartolomeB

JubeteY

MartinezE

DelacruzF

1991 Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives. Gene 102 75 78

74. BrennerS

1974 Genetics of Caenorhabditis elegans. Genetics 77 71 94

75. DerbiseA

LesicB

DacheuxD

GhigoJM

CarnielE

2003 A rapid and simple method for inactivating chromosomal genes in Yersinia. FEMS Immunol Med Microbiol 38 113 116

76. ChainPSG

CarnielE

LarimerFW

LamerdinJ

StoutlandPO

2004 Insights into the evolution of Yersinia pestis through whole genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 101 13826 13831

77. YanischperronC

VieiraJ

MessingJ

1985 Improved M13 phage cloning vectors and host strains - nucleotide-sequences of the M13, Mp18 and pUC19 vectors. Gene 33 103 119

78. StewartGSAB

LubinskyminkS

JacksonCG

CasselA

KuhnJ

1986 pHG165-A pBR322 Copy Number Derivative of pUC8 for Cloning and Expression. Plasmid 15 172 181

79. SockettRE

1998 Characterising Flagella and Motile Behaviour.

WilliamsP

SalmondG

KetleyJM

Methods in microbiology: methods for studying pathogenic bacteria London Academic Press 227 237

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Eozinofilní granulomatóza s polyangiitidou
nový kurz
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#