#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Myopathic Lamin Mutations Cause Reductive Stress and Activate the Nrf2/Keap-1 Pathway


Mutations in the human LMNA gene cause muscular dystrophy that is often accompanied by heart disease. The LMNA gene makes proteins that form a network on the inner side of the nuclear envelope, a structure that reinforces the cell nucleus. How mutations in the LMNA gene cause muscle disease is not well understood. Our studies provide evidence that LMNA mutations activate an intracellular signaling pathway and alter the redox homeostasis of muscle tissue. Thus, our results suggest that blocking the signaling pathway and maintaining the oxidative state of the diseased muscle are potential therapies for muscular dystrophy patients with LMNA mutations.


Vyšlo v časopise: Myopathic Lamin Mutations Cause Reductive Stress and Activate the Nrf2/Keap-1 Pathway. PLoS Genet 11(5): e32767. doi:10.1371/journal.pgen.1005231
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005231

Souhrn

Mutations in the human LMNA gene cause muscular dystrophy that is often accompanied by heart disease. The LMNA gene makes proteins that form a network on the inner side of the nuclear envelope, a structure that reinforces the cell nucleus. How mutations in the LMNA gene cause muscle disease is not well understood. Our studies provide evidence that LMNA mutations activate an intracellular signaling pathway and alter the redox homeostasis of muscle tissue. Thus, our results suggest that blocking the signaling pathway and maintaining the oxidative state of the diseased muscle are potential therapies for muscular dystrophy patients with LMNA mutations.


Zdroje

1. Worman HJ (2012) Nuclear lamins and laminopathies. The Journal of Pathology 226: 316–325. doi: 10.1002/path.2999 21953297

2. Worman HJ, Bonne G (2007) "Laminopathies": a wide spectrum of human diseases. Exp Cell Res 313: 2121–2133. 17467691

3. Worman HJ, Fong LG, Muchir A, Young SG (2009) Laminopathies and the long strange trip from basic cell biology to therapy. J Clin Invest 119: 1825–1836. doi: 10.1172/JCI37679 19587457

4. Herrmann H, Bar H, Kreplak L, Strelkov SV, Aebi U (2007) Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol 8: 562–573. 17551517

5. Wilson KL, Berk JM (2010) The nuclear envelope at a glance. J Cell Science 123: 1973–1978. doi: 10.1242/jcs.019042 20519579

6. Davidson PM, Lammerding J (2014) Broken nuclei—lamins, nuclear mechanics, and disease. Trends Cell Biol 24: 247–256. doi: 10.1016/j.tcb.2013.11.004 24309562

7. Worman HJ, Courvalin JC (2004) How do mutations in lamins A and C cause disease? The Journal of Clinical Investigation 113: 349–351. 14755330

8. Gesson K, Vidak S, Foisner R (2014) Lamina-associated polypeptide (LAP)2alpha and nucleoplasmic lamins in adult stem cell regulation and disease. Semin Cell Dev Biol 29: 116–124. doi: 10.1016/j.semcdb.2013.12.009 24374133

9. Dialynas G, Flannery KM, Zirbel LN, Nagy PL, Mathews KD, Moore SA, et al. (2012) LMNA variants cause cytoplasmic distribution of nuclear pore proteins in Drosophila and human muscle. Hum Mol Genet 21: 1544–1556. doi: 10.1093/hmg/ddr592 22186027

10. Duffy JB (2002) GAL4 system in Drosophila: a fly geneticist's Swiss army knife. Genesis 34: 1–15. 12324939

11. Krimm I, Ostlund C, Gilquin B, Couprie J, Hossenlopp P, Mornon JP, et al. (2002) The Ig-like structure of the C-terminal domain of lamin A/C, mutated in muscular dystrophies, cardiomyopathy, and partial lipodystrophy. Structure 10: 811–823. 12057196

12. Lammerding J, Fong LG, Ji JY, Reue K, Stewart CL, Young SG, et al. (2006) Lamins A and C but not lamin B1 regulate nuclear mechanics. J Biol Chem 281: 25768–25780. 16825190

13. Zwerger M, Jaalouk DE, Lombardi ML, Isermann P, Mauermann M, Dialynas G, et al. (2013) Myopathic lamin mutations impair nuclear stability in cells and tissue and disrupt nucleo-cytoskeletal coupling. Hum Mol Genet 22: 2335–2349. doi: 10.1093/hmg/ddt079 23427149

14. Riemer D, Stuurman N, Berrios M, Hunter C, Fisher PA, Weber K, et al. (1995) Expression of Drosophila Lamin-C Is Developmentally-Regulated—Analogies with Vertebrate a-Type Lamins. J Cell Science 108: 3189–3198. 7593280

15. Dialynas G, Speese S, Budnik V, Geyer PK, Wallrath LL (2010) The role of Drosophila Lamin C in muscle function and gene expression. Development 137: 3067–3077. doi: 10.1242/dev.048231 20702563

16. Kind J, van Steensel B (2010) Genome-nuclear lamina interactions and gene regulation. Curr Opin Cell Biol 22: 320–325. doi: 10.1016/j.ceb.2010.04.002 20444586

17. Mattout A, Pike BL, Towbin BD, Bank EM, Gonzalez-Sandoval A, Stadler MB, et al. (2011) An EDMD mutation in C. elegans lamin blocks muscle-specific gene relocation and compromises muscle integrity. Curr Biol: CB 21: 1603–1614. doi: 10.1016/j.cub.2011.08.030 21962710

18. Saisawang C, Wongsantichon J, Ketterman AJ (2012) A preliminary characterization of the cytosolic glutathione transferase proteome from Drosophila melanogaster. Biochem J 442: 181–190. doi: 10.1042/BJ20111747 22082028

19. Zhou S, Campbell TG, Stone EA, Mackay TF, Anholt RR (2012) Phenotypic plasticity of the Drosophila transcriptome. PLoS Genet 8: e1002593. doi: 10.1371/journal.pgen.1002593 22479193

20. Brewer AC, Mustafi SB, Murray TV, Rajasekaran NS, Benjamin IJ (2013) Reductive stress linked to small HSPs, G6PD, and Nrf2 pathways in heart disease. Antioxid Redox Signal 18: 1114–1127. doi: 10.1089/ars.2012.4914 22938199

21. Jain A, Lamark T, Sjottem E, Larsen KB, Awuh JA, Overvatn A, et al. (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. Journal Biol Chem 285: 22576–22591. doi: 10.1074/jbc.M110.118976 20452972

22. Nezis IP, Simonsen A, Sagona AP, Finley K, Gaumer S, Contamine D, et al. (2008) Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain. J Cell Biol 180: 1065–1071. doi: 10.1083/jcb.200711108 18347073

23. Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, et al. (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12: 213–223. doi: 10.1038/ncb2021 20173742

24. Deng H, Kerppola TK (2013) Regulation of Drosophila metamorphosis by xenobiotic response regulators. PLoS Genet 9: e1003263. doi: 10.1371/journal.pgen.1003263 23408904

25. Hayes JD, Dinkova-Kostova AT (2014) The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 39: 199–218. doi: 10.1016/j.tibs.2014.02.002 24647116

26. Bartlett BJ, Isakson P, Lewerenz J, Sanchez H, Kotzebue RW, Cumming RC, et al. (2011) p62, Ref(2)P and ubiquitinated proteins are conserved markers of neuronal aging, aggregate formation and progressive autophagic defects. Autophagy 7: 572–583. 21325881

27. Bera M, Kotamarthi HC, Dutta S, Ray A, Ghosh S, Bhattacharyya D, et al. (2014) Characterization of Unfolding Mechanism of Human Lamin A Ig Fold by Single-Molecule Force Spectroscopy-Implications in EDMD. Biochemistry 53: 7242–7258.

28. Scharner J, Lu HC, Fraternali F, Ellis JA, Zammit PS (2014) Mapping disease-related missense mutations in the immunoglobulin-like fold domain of lamin A/C reveals novel genotype-phenotype associations for laminopathies. Proteins 82: 904–915. doi: 10.1002/prot.24465 24375749

29. Brown CA, Lanning RW, McKinney KQ, Salvino AR, Cherniske E, Crowe CA, et al. (2001) Novel and recurrent mutations in lamin A/C in patients with Emery-Dreifuss muscular dystrophy. Am J Med Genet 102: 359–367. 11503164

30. Cao K, Blair CD, Faddah DA, Kieckhaefer JE, Olive M, Erdos MR, et al. (2011) Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts. J Clin Invest 121: 2833–2844. doi: 10.1172/JCI43578 21670498

31. Ostlund C, Bonne G, Schwartz K, Worman HJ (2001) Properties of lamin A mutants found in Emery-Dreifuss muscular dystrophy, cardiomyopathy and Dunnigan-type partial lipodystrophy. Journal of cell science 114: 4435–4445. 11792809

32. Choi JC, Muchir A, Wu W, Iwata S, Homma S, Morrow JP, et al. (2012) Temsirolimus activates autophagy and ameliorates cardiomyopathy caused by lamin A/C gene mutation. Science translational medicine 4: 144ra102. doi: 10.1126/scitranslmed.3003875 22837537

33. Magracheva E, Kozlov S, Stewart CL, Wlodawer A, Zdanov A (2009) Structure of the lamin A/C R482W mutant responsible for dominant familial partial lipodystrophy (FPLD). Acta crystallographica Section F, Structural biology and crystallization communications 65: 665–670. doi: 10.1107/S1744309109020302 19574635

34. Burke B, Stewart CL (2006) The laminopathies: the functional architecture of the nucleus and its contribution to disease. Annu Rev Genomics Hum Genet 7: 369–405. 16824021

35. Gotzmann J, Foisner R (2006) A-type lamin complexes and regenerative potential: a step towards understanding laminopathic diseases? Histochem Cell Biol 125: 33–41. 16142451

36. Simon DN, Domaradzki T, Hofmann WA, Wilson KL (2013) Lamin A tail modification by SUMO1 is disrupted by familial partial lipodystrophy-causing mutations. Mol Biol Cell 24: 342–350. doi: 10.1091/mbc.E12-07-0527 23243001

37. Christians ES, Benjamin IJ (2012) Proteostasis and REDOX state in the heart. Am J Physiol Heart Circ Physiol 302: H24–37. doi: 10.1152/ajpheart.00903.2011 22003057

38. Christians ES, Mustafi SB, Benjamin IJ (2014) Chaperones and cardiac misfolding protein diseases. Curr Protein Pept Sci 15: 189–204. 24694370

39. Zhang X, Min X, Li C, Benjamin IJ, Qian B, Ding Z, et al. (2010) Involvement of reductive stress in the cardiomyopathy in transgenic mice with cardiac-specific overexpression of heat shock protein 27. Hypertension 55: 1412–1417. doi: 10.1161/HYPERTENSIONAHA.109.147066 20439823

40. Verstraeten VL, Caputo S, van Steensel MA, Duband-Goulet I, Zinn-Justin S, Kamps M, et al. (2009) The R439C mutation in LMNA causes lamin oligomerization and susceptibility to oxidative stress. J Cell Mol Med 13: 959–971. doi: 10.1111/j.1582-4934.2009.00690.x 19220582

41. Badia MC, Giraldo E, Dasi F, Alonso D, Lainez JM, Lloret A, et al. (2013) Reductive stress in young healthy individuals at risk of Alzheimer disease. Free Radic Biol Med 63: 274–279. doi: 10.1016/j.freeradbiomed.2013.05.003 23665394

42. Teodoro JS, Rolo AP, Palmeira CM (2013) The NAD ratio redox paradox: why does too much reductive power cause oxidative stress? Toxicol Mech Methods 23: 297–302. doi: 10.3109/15376516.2012.759305 23256455

43. Wilson KL, Foisner R (2010) Lamin-binding Proteins. Cold Spring Harbor perspectives in biology 2: a000554. doi: 10.1101/cshperspect.a000554 20452940

44. Singla A, Griggs NW, Kwan R, Snider NT, Maitra D, Ernst SA, et al. (2013) Lamin aggregation is an early sensor of porphyria-induced liver injury. J Cell Sci 126: 3105–3112. doi: 10.1242/jcs.123026 23641075

45. Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431: 805–810. 15483602

46. Ramos FJ, Chen SC, Garelick MG, Dai DF, Liao CY, Schreiber KH, et al. (2012) Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci Transl Med 4: 144ra103. doi: 10.1126/scitranslmed.3003802 22837538

47. Park YE, Hayashi YK, Bonne G, Arimura T, Noguchi S, Nonaka I, et al. (2009) Autophagic degradation of nuclear components in mammalian cells. Autophagy 5: 795–804. 19550147

48. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6: 277–293. 8520220

49. Lee W, Westler WM, Bahrami A, Eghbalnia HR, Markley JL (2009) PINE-SPARKY: graphical interface for evaluating automated probabilistic peak assignments in protein NMR spectroscopy. Bioinformatics 25: 2085–2087. doi: 10.1093/bioinformatics/btp345 19497931

50. Johnson BA (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. Methods Mol Biol 278: 313–352. 15318002

51. Shaffer CD, Wuller JM, Elgin SC (1994) Raising large quantities of Drosophila for biochemical experiments. Method Cell Biol 44: 99–108. 7707979

52. Schulze SR, Curio-Penny B, Li Y, Imani RA, Rydberg L, Geyer PK, et al. (2005) Molecular genetic analysis of the nested Drosophila melanogaster Lamin C gene. Genetics 171: 185–196. 15965247

53. Lammerding J, Lee RT (2009) Mechanical properties of interphase nuclei probed by cellular strain application. Method Mol Biol 464: 13–26. doi: 10.1007/978-1-60327-461-6_2 18951177

54. Downey T (2006) Analysis of a multifactor microarray study using Partek genomics solution. Method Enzymol 411: 256–270. 16939794

55. Pircs K, Nagy P, Varga A, Venkei Z, Erdi B, Hegedus K, et al. (2012) Advantages and limitations of different p62-based assays for estimating autophagic activity in Drosophila. PLoS One 7: e44214. doi: 10.1371/journal.pone.0044214 22952930

56. Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27: 502–522. 4388022

57. Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106: 207–212. 7416462

58. Zhang Z, Yu J, Stanton RC (2000) A method for determination of pyridine nucleotides using a single extract. Anal Biochem 285: 163–167. 10998277

59. Glock GE, Mc LP (1953) Further studies on the properties and assay of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase of rat liver. Biochem J 55: 400–408. 13105646

60. Rzezniczak TZ, Merritt TJ (2012) Interactions of NADP-reducing enzymes across varying environmental conditions: a model of biological complexity. G3 (Bethesda) 2: 1613–1623. doi: 10.1534/g3.112.003715 23275884

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Eozinofilní granulomatóza s polyangiitidou
nový kurz
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#