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SOUHRN
Somatické mutace protoonkogenů RAS (rat sarcoma viral oncogene homolog) vedou k nekontrolované konstitu-
tivní aktivaci RAS indukovaných signálních drah ovlivňujících procesy proliferace, diferenciace a apoptózy buněk. 
U pacientů s akutní myeloidní leukemií (AML) lze mutace genů RAS identifikovat u přibližně pětiny nemocných. 
Mutace jsou heterozygotní, typu „missense“, lokalizované především do kodonů G12, G13 a  Q61 exonů 2 a  3. 
Nejčastěji mutovaným genem rodiny je NRAS. Vzácně lze identifikovat případy pacientů se současným výskytem 
mutací v genu NRAS i genu KRAS. Přibližně desetina NRAS pozitivních AML pacientů vykazuje polyklonalitu mutací. 
Mutace genů RAS jsou často detekovány společně s chromozomálními aberacemi inv(16)/t(16;16) či t(8;21), ale také 
inv(3)/t(3;3) nebo s normálním karyotypem a mutacemi v genech NPM1 a DNMT3A. Většina velkých publikovaných 
studií nepotvrdila vliv mutací na celkové přežití pacientů. Asociace mutací s dalšími klinickými parametry je ne-
jednoznačná. V procesu leukemogeneze jsou mutace genů rodiny RAS sekundární událostí přispívající k progresi 
a proliferaci AML subklonů. 
Cílem předkládané práce je shrnutí aktuálních poznatků o genové rodině RAS a jejím významu u pacientů s AML.
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SUMMARY 
Ďuriníková A., Folta A., Čulen M., Herudková Z., Al Tukmachi D., Mayer J., Ježíšková I.
Mutations of the RAS family in patients with acute myeloid leukaemia
Somatic mutations in RAS (rat sarcoma viral oncogene homolog) proto-oncogenes lead to constitutive activation 
of RAS signalling pathways impacting cellular proliferation, differentiation and apoptosis. RAS mutations are de-
tected in approximately one fifth of patients with acute myeloid leukaemia (AML). Typically, the aberrations are 
missense heterozygous point mutations localized in codons G12, G13 and Q61 in exons 2 and 3, respectively. In AML, 
NRAS is the most frequently mutated gene of the RAS family. Simultaneously mutated NRAS and KRAS genes in 
one patient are possible, but rare. In approximately 10% of AML patients, multiple NRAS mutations are detected. 
The RAS mutations occur with higher frequency in AML patients with chromosomal aberrations inv(16)/t(16;16), 
t(8;21), inv(3)/t(3;3). In patients with normal karyotype, the RAS genes are frequently co-mutated with the NPM1 and 
DNMT3A genes. Most of the large cohort studies did not demonstrate any implication of RAS mutations on overall 
survival, and its occurrence was not significantly associated with any clinical parameters. During leukaemogenesis, 
RAS mutations play a role as late secondary events supporting increased proliferation of AML subclones.
The aim of this work is to summarize the current knowledge about the RAS gene family and its significance in 
patients with AML.
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Pacientům s myelo brózou
Zlepšení kvality života (QoL). 

Vyšší celkové přežití.

Volbou Jakavi můžete pomoci svým pacientům zmenšit slezinu, zmírnit 
symptomy spojené s MF a příznivě ovlivnit celkové přežití.1,2

Ve studii COMFORT II bylo prokázáno 52% snížení rizika úmrtí u pacientů 
léčených ruxolitinibem v porovnání s pacienty v rameni s BAT (HR=0,48; 
95% CI: 0,28-0,85; P=0,009)1

POKROK V LÉČBĚ MYELOFIBRÓZY
Přípravek Jakavi® je v současné době jedinou schválenou
farmakologickou léčbou pacientů s MF. 2,3,4
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ÚVOD 
Molekulárně-cytogenetickým profilováním byla 

nedávno u pacientů s akutní myeloidní leukemií (AML) 
identifikována řada somatických změn, které je možné 
asociovat s různými rizikovými skupinami a prognózou 
[1, 2]. Častými somatickými aberacemi jsou u pacientů 
s  AML také mutace genů rodiny RAS (rat sarcoma viral 
oncogene homolog) [2–14]. Membránové proteiny rodiny 
RAS fungují v  buňkách jako molekulární přepínače 
zodpovědné za regulaci signální transdukce mezi cyto-
plazmou a jádrem. Aktivační mutace protoonkogenů 
RAS vedou k nekontrolované konstitutivní signalizaci 
a deregulaci buněčných drah řídících procesy prolife-
race, diferenciace a apoptózy [15, 16]. 

Cílem následujícího textu je shrnutí aktuálních 
poznatků o genové rodině RAS a jejím významu u pa-
cientů s AML. 

RODINA RAS 
Proteiny RAS patří spolu s  přibližně stem více či 

méně homologních proteinů rodin ARF, RAB, RAN 
a RHO do superrodiny RAS, označované též jako malé 
G-proteiny, nebo malé GTPázy. Rodinu genů RAS tvoří 

tři geny kódující čtyři vysoce homologní 21 kD proteiny: 
NRAS (neuroblastoma rat sarcoma viral oncogene homolog), gen 
lokalizovaný v  lokusu 1p13.2; HRAS (Harvey rat sarcoma 
viral oncogene homolog), gen lokalizovaný v lokusu 11p15.5; 
a dvě sestřihové varianty KRAS (Kirsten rat sarcoma viral 
oncogene homolog) – KRAS4A/KRAS4B, gen lokalizovaný v lo-
kusu 12p12.1. Geny KRAS a HRAS byly popsány v roce 1982 
[17], gen NRAS byl popsán o rok později [18]. Původně 
byly geny rodiny RAS identifikovány jako virové geny 
transdukované z hlodavčího genomu, přičemž se zjis-
tilo, že právě tyto geny určují transformační vlastnosti 
onkogenních retrovirů [19].

Zatímco N-terminální konec RAS proteinů je tvořen 
vysoce konzervovanou G-doménou, C-terminální konec 
je hypervariabilní. Prvních 85 aminokyselin (AMK) je 
identických pro všechny čtyři RAS proteiny a specifi-
kuje vazbu na guanozindifosfát (GDP) a guanozintri-
fosfát (GTP). Aminokyseliny 10–16 tvoří fosfát vázající 
smyčku (P-loop), která se váže na γ-fosfát GTP. Oblasti 
aminokyselin 32–38 a 59–67 se nazývají spínač I (Switch I) 
a  spínač II (Switch II). Následujících 80 AMK (AMK 
85–165) vykazuje mezi jednotlivými RAS izoformami 
85–90% sekvenční identitu. Hypervariabilní doména 

Obr. 1. Srovnání izoforem RAS
Schéma znázorňuje strukturu jednotlivých izoforem: HRAS, NRAS, KRAS4A a KRAS4B. Všechny izoformy mají homologní vazebné domény 
P-loop, Switch I a Switch II; oblast aminokyselin 85–165 vykazuje 85–90% sekvenční identitu mezi různými izoformami. C-terminální doména 
je hypervariabilní, specifikuje membránovou lokalizaci izoforem: HRAS – skrze sekvenci aminokyselin CVLS, NRAS – sekvence CVVM, 
KRAS4A – sekvence CIIM a KRAS4B sekvence CVIM. Dále se na membránové lokalizaci u HRAS, NRAS a KRAS4A podílí specifická pozice 
cysteinů (naznačeno). U KRAS4B je membránová lokalizace dána na základě repetitivní sekvence lysinů (KKKKKK, naznačeno). Barevně 
je vyznačen stupeň homologie mezi jednotlivými izoformami: fialově – konzervované domény, světle růžově – variabilní oblasti. Kodony 
nejčastěji postihované somatickými mutacemi jsou označeny v pozicích 12, 13 a 61.                                   Upraveno podle Schubbert et al. [15].
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C-konce (AMK 165 až 188/189) specifikuje lokalizaci 
RAS proteinů v  cytoplazmatické membráně pomocí 
posttranslačních modifikací (obr. 1) [15].

Všechny proteiny RAS mají identické vazebné do-
mény, a proto interagují se stejnými vazebnými part-
nery. RAS proteiny se neustále aktivují a  deaktivují 
v závislosti na vazbě s GTP (RAS + GTP → „zapnuto“) 
nebo GDP (RAS + GDP → „vypnuto“). Za normálních 
podmínek je RAS přítomný v neaktivním stavu ve vazbě 
s GDP, ve kterém zůstává, dokud nedojde k extracelu-
lárnímu stimulu – vazbě ligandu na tyrozinkinázový 
receptor (TKR). Stimulem může být přítomnost mi-
togenů, cytokinů, hormonů nebo růstových faktorů. 
GTP-aktivovaný RAS může interagovat s  více než 20 
efektorovými molekulami, a regulovat tak různé dráhy 
zapojené do procesů proliferace, diferenciace a přeží-
vání buněk [20]. 

Přes aktivovaný RAS je signál přenášen dále na 
molekuly postavené níže v rámci signální dráhy. Mezi 
nejlépe prostudované dráhy ovlivňované RAS patří RAF-
MEK-ERK kaskáda, která je zapojena do regulace expre-
se proteinů kontrolujících buněčný cyklus (např. cyklin 
D) [21]. Dalším významným efektem RAS signalizace je 
aktivace PIK3CA dráhy, která stimuluje aktivaci AKT ki-
názy. AKT kináza reguluje přežívání buněk fosforylací 
a deaktivací pro-apoptotických proteinů. Proteiny RAS 
mohou rovněž interagovat s aktivačními faktory RAL 
proteinů, které stimulují expresi fosfolipázy D a mají 
významnou roli v transformaci a onkogenezi různých 
buněčných typů [22]. 

RAS supresorovými regulátory jsou především 
GTPázové aktivační proteiny (GAPs), které stimulují 
a několikanásobně zvyšují vlastní GTPázovou aktivitu 
RAS proteinů vedoucí k hydrolýze GTP a deaktivaci RAS 
proteinů [23].

RAS ONKOGENY
Aktivační mutace v genech RAS jsou detekovatelné 

u  přibližně 30 % všech lidských malignit. To je řadí 
mezi nejčastější aberace spojené s nádorovým onemoc-
něním. Známa je asociace mutací jednotlivých RAS 
izoforem s určitými typy nádorů. Mutace v genu KRAS 
jsou typicky spojovány s  nádorovým onemocněním 
střev, pankreatu či dělohy, zatímco mutace v  genu 
NRAS jsou s vyšší četností detekovány právě u hemato-
logických malignit a pacientů s melanomem. Mutace 
v genu HRAS jsou obecně raritní, ve zvýšené míře se 
vyskytují u pacientů s nádory slinných žláz nebo mo-
čového traktu [24].

Mutace genů RAS postihují oblasti, které určují 
enzymatickou aktivitu proteinu. U všech čtyř RAS ho-
mologů jsou pozorovány výhradně substituční bodové 

„missense“ mutace téměř výlučně lokalizované do „hot 
spot“ oblastí v  exonech 2 a  3. Dominantně se jedná 
o glycinové substituce [9].

Studium krystalové struktury GDP-RAS komplexů 
pomohlo pochopit interakci, ke které dochází mezi GDP 
a  RAS. Všechny dosud známé transformační lokusy 
mutací RAS jsou seskupeny v  blízkosti vazby guani-
nového nukleotidu. Srovnáním neaktivních GDP-RAS 
komplexů s „wild type“ nebo onkogenním RAS protei-
nem nebyly zjištěny žádné výrazné strukturní roz-
díly. Naproti tomu srovnání aktivovaných GTP-RAS 
komplexů odhalilo způsob, jakým je u  mutovaného 
RAS zabráněno hydrolýze GTP. Děje se tak především 
změnou orientace γ-fosfátu nebo zabráněním jeho 
participace na hydrolýze GTP. Mutace vedou k zasta-
vení indukce hydrolýzy GTP, a  tedy ke konstitutivní 
aktivaci RAS proteinu, nezávislé na vnější signalizaci 
[25]. Zatímco mutace v kodonu 61 vedou k aktivaci RAS 
narušením jeho GTPázové aktivity, mutace v kodonech 
12 a 13 dosahují stejného efektu snížením senzitivity 
RAS proteinu k supresorovým regulátorům GAPs [26].

MUTACE GENŮ RODINY RAS 
U PACIENTŮ S AML

Typy mutací
Mutace genů rodiny RAS byly u  pacientů s  AML 

identifikovány před více než 30 lety [27]. Publikované 
frekvence mutací, které jsou odrazem použité metody 
analýzy a  také různé struktury testovaného soubo-
ru pacientů s  AML, se pohybují v  poměrně  širokém 
rozmezí od 3 do 30 % (podrobně v tabulce 1). Více než 
tři čtvrtiny aberací genů rodiny RAS připadají na gen 
NRAS; gen KRAS je mutován méně často a mutace genu 
HRAS jsou u pacientů s AML zcela ojedinělé [2–14]. Podle 
dostupných studií se mutace v genech rodiny RAS ve 
vývoji AML objevují až jako pozdní událost přispívající 
spíše k progresi a proliferaci AML subklonů [2, 28, 29]. 
Z hlediska klonální hierarchie de novo AML jim zpravi-
dla předchází vznik chromozomálních aberací nebo 
vznik mutace v genu NPM1 nebo jiném genu plnícím 
funkci transkripčního faktoru AML (RUNX1, CEBPA, 
GATA2). Teprve na ně obvykle navazuje mutace genu 
účastnícího se buněčné signalizace (genů rodiny RAS 
nebo též genu FLT3 či KIT). Tomuto uspořádání může 
jako preleukemický stupeň předcházet vznik mutací 
v genech účastnících se epigenetické regulace (zejména 
DNMT3A a TET2) [30].

Mutace genů rodiny RAS nejčastěji postihují kodon 
G12. Nejfrekventovanější aberací je u pacientů s AML 
mutace G12D v genu NRAS, která tvoří více než 40% podíl 
všech RAS detekovaných mutací. Z hlediska typu mu-
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Tab. 1. Frekvence mutací v genech rodiny RAS u pacientů s AML 

Autor

Pacienti
Použitá metoda 
detekce

NRAS (%) KRAS (%) HRAS (%)
počet věková skupina charakteristika

Farr et al. 1988 [12] 52 neuvedeno de novo AML alelově specifická 
dot-blot hybridizace

27 0 0 

Neubauer et al. 1994 
[11]

99 < 60 de novo AML hybridizace s alelově 
specifickými 
oligonukleotidy

13 8 ND

Bowen et al. 2005 [10] 1106 18–60 de novo AML denaturační 
vysokoúčinná      
kapalinová 
chromatografie

11 5 0

Bacher et al. 2006 [9] 2502 18–92 de novo AML, sAML, 
tAML

vysokorozlišovací 
analýza křivek tání

10 ND ND

Schlenk et al. 2008 [8] 872 18–60 CN-AML přímé sekvenování 13 ND ND

Kadia et al. 2012 [54] 609 17–88 de novo AML přímé sekvenování 8 3 ND

Yang et al. 2013[55] 504 16–83 de novo AML vysokorozlišovací 
analýza křivek tání

10 3 ND

Dunna et al. 2014 [7] 135 neuvedeno de novo AML přímé sekvenování 5 ND ND

Reuter et al. 2014 	
[16]

204 18–60 CN-AML přímé sekvenování 12 2 ND

Krauth et al. 2014 [13] 139 18–84 de novo AML, tAML  
s t(8;21)/RUNX1-
RUNX1T1

neuvedeno 14       
de novo 
AML; 9 tAML

4         
de novo 
AML; 5 
tAML

ND

Shin et al. 2016 [5] 114 < 60 de novo AML, sAML masivně paralelní 
sekvenování (Illumina 
Miseq)

7 0 ND

Ley et al. 2013 [4] 200 39–71 de novo AML masivně paralelní 
sekvenování (Illumina 
HiSeq)

8 4 ND

Metzeler et al. 2016 [3] 664 18–86 de novo AML, sAML, 
tAML

celoexomové 
sekvenování (Illumina 
MiSeq)

22 6 ND

Papaemmanuil et al. 
2016 [20]

1540 18–84 de novo AML, sAML, 
tAML

masivně paralelní 
sekvenování (Illumina 
HiSeq)

18 5 ND

Vysvětlivky: ND – nedetekováno; CN-AML – AML s normálním karyotypem; sAML – sekundární AML; tAML – AML vzniklá v důsledku předchozí terapie
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tací je v kodonech G12, G13 a Q61 nejčastěji detekována 
substituce bází G > A (60 %), následovaná transverzemi 
G > C, G > T a C > A [10, 11]. Nejčastějšími aminokyse-
linovými substitucemi jsou pro kodony 12 a 13 záměny 
glycin → kyselina asparagová (G12D, G13D), glycin → 
serin (G12S, G13S) a glycin → alanin (G12A, G13A). Pro 
kodon 61 jsou typické substituce C > A a A > G způsobu-
jící aminokyselinové záměny glutamin →lyzin (Q61K) 
a glutamin → arginin (Q61R). Spektrum mutací s pre-
dominancí substitucí G > A je typické pro onemocnění 
myeloidní řady (AML, myelodysplastický syndrom – 
MDS), zatímco u onemocnění lymfoidní krevní řady, 
resp. lymfomů jsou popisovány spíše transverze G > T. 
Mutace v kodonu 61 jsou s vyšší frekvencí detekovány 
především u pacientů s myelomem [10].

Vedle „hot spot“ mutací lze u pacientů s AML raritně 
detekovat také další somatické změny postihující jiné 
kodony genu. Tyner et al. popsali čtyři vzácné (ne-
kanonické) mutace – V14I, A146T a T74P v genu KRAS 
a mutaci G60E v genu NRAS – u skupiny 7 z celkově 341 
vyšetřených pacientů s AML [31]. Pro všechny uvedené 
mutace byl stanoven stejný onkogenní potenciál jako 
pro časté (kanonické) RAS mutace. 

U NRAS pozitivních AML pacientů lze běžně identi-
fikovat simultánní výskyt několika mutací genu NRAS 
současně. Tato tzv. polyklonalita mutací je detekována 
u  přibližně 15 % NRAS pozitivních pacientů, přičemž 
její význam není zřejmý. Analýzy klonálního pozadí 
vícečetných NRAS mutací nicméně identifikovaly jed-
notlivé aberace lokalizované samostatně na dílčích 
alelách genů, tj. v  jednotlivých AML subklonech [2, 
12, 28]. Pouze starší práce Kubo et al. popisuje detekci 
klonu se dvěma mutovanými lokusy na jedné alele 
genu u AML pacienta s celkově 4 mutacemi genu NRAS 
lokalizovanými ve 3 různých kodonech [32]. 

Provedené analýzy mutací genů rodiny RAS na páro-
vých vzorcích z doby diagnózy a relapsu onemocnění pa-
cientů s AML ukazují, že mutace v relapsu onemocnění 
často absentují. Důvodem pro to může být vyšší senziti-
vita buněk nesoucích mutace genů RAS k chemoterapii 
nebo už dříve zmiňovaný druhotný význam mutací 
ve vývoji AML [29, 33]. Raritně však lze identifikovat 
případy pacientů s AML, u nichž v relapsu onemocnění 
dochází ke změně typu mutace [34], nebo kdy se mutace 
v genech rodiny RAS objevují de novo [9, 35].

Koexistence mutací
Mutace v genech rodiny RAS jsou u pacientů s AML 

často asociovány s jinými somatickými aberacemi se 
známým vztahem k AML. S četností 9–45 % byly mutace 
v genech RAS detekovány ve skupině pacientů s t(8;21), 
resp. fuzním genem RUNX1/RUNX1T1 (dříve AML1/ETO) 

[36–38]. Studie Zuber et al. a Zhao et al. prokázaly na 
RUNX1/RUNX1T1 pozitivních myších modelech korelaci 
mezi přítomností mutací G12D v  genu NRAS a  G12D 
v genu KRAS a rychlejší progresí onemocnění. Negativní 
korelaci identifikovali pro přítomnost mutací a celkové 
přežití [37, 38]. 

Také přibližně třetina pacientů s  inv(16)/t(16;16), 
tj. fuzním genem CBFB/MYH11, nese současně mutace 
genů rodiny RAS. Valk et al. identifikovali mutace genů 
rodiny RAS u přibližně 33 %, a Bacher et al. u necelých 
38 % AML pacientů s inv(16)/t(16;16) [9, 40].

Také pacienti s inv(3)/t(3;3) vykazují zvýšenou frek-
venci mutací genů NRAS a KRAS [9, 10, 41, 42]. Přímým 
důsledkem inv(3)/t(3;3) bývá aberantní exprese genu 
EVI1 v lokusu MECOM [43]. Deregulace exprese genu EVI1 
byla u leukemických malignit popsána jako významný 
faktor progrese onemocnění [44]. Studie provedené za 
pomocí myších modelů naznačují, že samotná aberant-
ní zvýšené exprese genu EVI1 není pro leukemogenezi 
AML dostatečná a vyžaduje přítomnost dalších změn, 
resp. určitého proliferačního signálu [43]. Groschel et al. 
ukázali, že 98 % analyzovaných pacientů s inv(3)/t(3;3)  
nese současně aktivační mutace genů rodiny RAS 
[45]. Vysoká frekvence mutací v  genech RAS byla 
u pacientů s inv(3)/t(3;3) identifikována také v práci 
Lavallée et al. [46]. Společný výskyt uvedených abe-
rací tak naznačuje, že se na plné leukemické trans-
formaci pacientů s  inv(3)/t(3;3) podílí také mutace 
genů rodiny RAS [43].

Za zajímavý lze považovat fakt, že u pacientů ne-
soucích výše uvedené chromozomální aberace, jsou 
mutace v  genech rodiny RAS soustředěny primárně 
do  kodonu 61. To může naznačovat, že je  určitý typ 
chromozomální aberace asociován s konkrétním typem 
mutace  v genu rodiny RAS [9, 47, 48].

Aberace genů rodiny RAS jsou často detekovány také 
ve skupině AML pacientů s normálním karyotypem, 
a  to společně se somatickými mutacemi genů NPM1 
a/nebo DNMT3A [2, 6, 49]. Překvapivé jsou rozdíly ve 
specifickém výskytu mutací RAS v rámci jednotlivých 
„hot spot“ genů. Příkladem mohou být mutace v genu 
NPM1, které jsou přednostně asociovány s NRAS muta-
cemi v kodonech G12 a G13, nikoliv však s Q61. Z toho lze 
usuzovat, že funkční důsledky „hot spot“ mutací v rámci 
jednoho genu nejsou rovnocenné a jakákoliv klinická 
asociace s těmito mutacemi muže být ovlivněna jinými, 
současně mutovanými geny [2].

U malého procenta AML pacientů (0,3–3 %) lze dete-
kovat současný výskyt mutací ve dvou různých genech 
rodiny RAS (KRAS a NRAS) [10, 11]. Podle Hiorns et al. se 
v tomto případě pravděpodobně jedná o proces postup-
né akumulace jednotlivých mutací [50]. U studované-
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ho pacienta byla mutace v genu KRAS detekována již 
v leukemické kmenové buňce a mutace v genu NRAS 
se objevila až v pozdější fázi leukemogeneze. Význam 
tohoto simultánního výskytu mutací RAS zatím není 
objasněn.

Mutace v genech rodiny RAS se jen vzácně vyskytu-
jí společně s mutacemi genů FLT3, KIT a KMT2A (dříve 
MLL), které jsou podobně jako geny RAS zapojeny do 
signální regulace proliferace [6, 38]. Raritní koexis-
tenci mutací RAS a FLT3 lze pravděpodobně vysvětlit 
tím, že oba geny poskytují leukemické buňce proli-
ferační výhodu zapojením stejných signálních drah, 
přičemž je známo, že FLT3-ITD částečně využívá RAS 
signalizační dráhu [4, 10]. Tento jev zřejmě stojí i za 
velmi nízkým výskytem mutací genů NRAS u pacientů 
s akutní promyelocytární leukemií (APL) – vyskytují 
se jen u cca 2 % případů, u nichž je známa silná aso-
ciace s mutacemi v genu FLT3 [9, 51, 52]. Dále bývají 
mutace genů rodiny RAS s nízkou četností zastoupeny 
také u podskupiny starších pacientů s mutacemi v ge-
nu TP53, komplexním karyotypem, aneuploidiemi 
nebo jejich vzájemnou kombinací [2, 53].

Prognostický význam mutací
Prognostický význam mutací genů rodiny RAS byl 

u pacientů s AML analyzován v několika studiích (po-
drobně viz tabulka 1). Rozsáhlá analýza 1106 AML pa-
cientů byla provedena v  roce 2005 skupinou Bowen 
et al., kteří prokázali, že přítomnost mutací v  genu 
NRAS nemá u  pacientů s  AML signifikantní vliv na 
dosažení kompletní remise (CR), přežití bez nemoci 
(DFS) a celkové přežití (OS). Dále Bowen et al. uvádějí, 
že přítomnost mutací v genech rodiny RAS není asocio- 
vána s věkem, pohlavím, počtem bílých krvinek nebo 
de novo vs. sekundárním výskytem AML (sAML) [10]. 
Bacher et al. analyzovali početnou skupinu 2502 AML 
pacientů. Mutace v  genu NRAS nebyly v  testovaném 
souboru signifikantně asociovány s OS, přežitím bez 
události (EFS) nebo přežitím bez relapsu (RFS). Studie 
dále potvrdila, že mutace genu NRAS nejsou asociová-
ny s věkem a historií AML (de novo vs. sAML vs. AML 
asociovaná s předchozí terapií – tAML). Na rozdíl od 
předchozí práce ale studie identifikovala signifikantní 
asociaci mezi přítomností mutací v genu NRAS a niž-
ším počtem bílých krvinek [9]. Kadia et al. publikovali 
analýzu 609 pacientů s  de novo AML. Studie ukázala, 
že pacienti s mutacemi v genech rodiny RAS jsou sig-
nifikantně mladší než pacienti bez mutací (53 vs. 63 
let) a mají vyšší počet bílých krvinek a procento blastů 
v kostní dřeni v době diagnózy. Práce neidentifikovala 
významný vliv přítomnosti mutací v genech RAS na 
celkové OS ani dosažení CR [54]. Další rozsáhlou stu-

dii zaměřenou na hodnocení klinických parametrů 
pacientů s  mutacemi v  genech rodiny RAS provedli 
Yang et al. Studie na 504 AML pacientech ukázala, 
že mutační status genů rodiny RAS není ovlivněn 
věkem či pohlavím pacientů, ale že pacienti s muta-
cemi genů rodiny RAS mají signifikantně vyšší počet 
bílých krvinek. Oproti předchozím studiím bylo touto 
studií identifikováno významně kratší OS u pacientů 
nesoucích mutace genů RAS [55]. Reuter et al. analyzo-
vali skupinu AML pacientů s  normálním karyotypem 
(CN-AML). Ve studii nebyly identifikovány signifi-
kantní rozdíly pro věk, pohlaví, původ AML (de novo 
vs. sAML) ani počet bílých krvinek mezi testovanými 
skupinami pacientů. Pro mutační status genů rodiny 
RAS nebyl ve studii identifikován signifikantní vliv 
na OS či RFS [6]. Komplexní analýza vlivu interakcí 
mezi mutacemi v genech rodiny RAS a aberacemi v dal-
ších genech s ohledem na OS byla provedena v práci 
Papaemmanuil et al. Studie identifikovala u skupiny 
NPM1mutDNMT3AmutNRASG12/13mut pacientů příznivější 
prognózu než u pacientů bez kombinace uvedených 
mutací [2]. Nedávno byla provedena rozsáhlá meta- 
analýza dat zaměřená na vliv mutací v genech rodiny 
RAS na celkové přežití pacientů s AML skupinou Liu et 
al. Metaanalýza zahrnovala celkem 24 studií (včetně 
5 pediatrických) z období let 1990–2018. Výsledky stu-
die ukázaly, že u dospělých pacientů s AML nemají 
mutace genů rodiny RAS signifikantní vliv na celkové 
přežití. Nicméně studie uvádí, že u dětských pacientů 
by mutace v  genu NRAS mohly být prognostickým 
markerem pro kratší OS [56].

ZÁVĚR
Aberace genů rodiny RAS jsou u pacientů s AML iden-

tifikovány s vysokou četností. Mutace lze detekovat na-
příč všemi prognostickými skupinami AML, často jako 
další genetickou změnu vedle somatických chromozo-
málních či genových aberací. Relapsy onemocnění jsou 
běžně spojeny s absencí mutací detekovaných v době 
diagnózy. Většina velkých studií neidentifikovala vliv 
mutací v genech rodiny RAS na celkové přežití pacientů 
s AML, spojení mutací s dalšími klinickými parametry 
není jednoznačné. To vše, navzdory frekventovanému 
výskytu, aktuálně nepredikuje širší možnost využití 
mutací v genech rodiny RAS v rutinní diagnostice. Do 
budoucna, v souvislosti s příchodem nových léčiv, však 
nelze vyloučit uplatnění mutací jako prediktivních 
markerů odpovědi na určitý typ terapie. 

Použité zkratky
AKT – serin/threonin protein kináza; AMK – aminoky-
selina; AML – akutní myeloidní leukemie; APL – akutní 
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promyelocytární leukemie; CBF AML– core-binding factor 
AML (AML s  t(8;21) nebo inv(16)/t(16;16)); CN-AML – 
AML s normálním karyotypem; EFS – přežití bez udá-
losti; ERK – skupina signalizačních kináz účastnící se 
signalizace v rámci MAPK dráhy; GDP – guanozindi-
fosfát; GTP – guanozintrifosfát; MDS – myelodysplas-
tický syndrom; MEK – pro-apoptotická protein kináza, 
aktivující MAPK; OS – celkové přežití;RAS – rat sarcoma 
viral oncogene homolog; RFS – přežití bez relapsu; sAML 
– sekundární AML; tAML – AML vzniklá v  důsledku 
předchozí terapie; TKR – tyrozin kinázový receptor; 
VAF – frekvence variantní alely
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