
50 Transfuze Hematol. dnes, 14, 2008

Transkripční regulace je hlavním mechanismem v zá-
stavě buněčného cyklu, diferenciaci a/nebo buněčné smr-
ti buněk in vivo a in vitro. Jedním z regulačních mecha-
nismů zapojených do ovlivnění transkripce je změna v ter-
ciární struktuře DNA, která ovlivňuje přístup transkripč-
ních faktorů k cílovým segmentům DNA. 

V eukaryotickém jádře je DNA sbalena do nukleopro-
teinového komplexu nazývaného chromatin (1). Základ-
ní stavební jednotkou chromatinu je nukleosom, který ob-
sahuje DNA, histony (2A, 2B, 3 a 4) tvořený oktamer
a molekuly histonu 1 (H1) sloužící jako linker. Nukleo-
som obsahuje DNA o délce 147bp (párů bází), která se
obtáčí přibližně 1,7krát okolo těla oktameru. Nukleoso-
my jsou navzájem propojeny linkerovou DNA. H1 inter-
aguje s nukleosomem a s linkerovou DNA a podporuje
vyšší organizaci a kompaktnost chromatinu. Struktura
a kompozice chromatinu jsou rozhodující pro procesy
probíhající na úrovni DNA, například přístupnost pro
ATP-závislé chromatin-remodelující faktory, reparaci
DNA, DNA replikaci a homologickou rekombinaci (2–5).
Chromatin–remodelující faktory jsou zodpovědné za ak-
tivitu skládání a rozkládání nukleosomů a také mobiliza-
ci (tzv. sliding) nukleosomů. Navíc jsou histony vysta-
veny široké škále posttranslačních modifikací jako je ace-
tylace, metylace, fosforylace, ubiquitinace, jež mění je-
jich biofyzikální vlastnosti a působí jako signál pro spe-
cifické interakce regulačních faktorů s chromatinem
(6–8). Acetylace (hlavně na H3 a H4) je téměř výlučně
spjata s transkripčně aktivním stadiem chromatinu. Pro-
to je funkce acetyltransferázy histonů (HAT) spojována
s aktivací a deacetylázy histonů (HDAC) s represí. 

Deacetylázy histonů jsou charakterizovány svou schop-
ností odstranit acetylovou skupinu z lyzinového zbytku
lokalizovaného na histonu a na transkripčních faktorech
jako jsou YY1, PLZF a p53 (9, 10). Konec histonu vy-
stupuje přes DNA na povrch nukleosomu, kde může být
enzymaticky modifikován a interagovat s jinými protei-
ny a sousedními nukleosomy. Deacetylací histonů na ami-
nokyselinových zbytcích vzniká kladný náboj, tím dochá-
zí k těsnější vazbě mezi nukleosomy a vytváří se nevhod-
né prostředí pro transkripci. Naopak po acetylaci zabez-
pečované HAT dochází k volnější vazbě DNA a histonů
a daná oblast se zpřístupní pro transkripční komplex.
Acetylace a deacetylace chromatinu je fundamentální ži-
votní funkcí všech organismů tvořených jadernými buň-
kami. Enzymy tohoto procesu zabezpečují rovnováhu
v aktivitě chromatinu, která je důležitá pro normální vý-
voj buněk. Narušení této rovnováhy může vést k malig-
nímu zvratu. 

HDAC se řadí do tří hlavních tříd na základě homolo-
gie s kvasinkovými proteiny rpd1, hda1 a SIR2 (11).
HDAC se liší ve vzorci exprese, ve schopnosti spojovat
se s korepresory a rovněž v molekulární struktuře. Něk-
teré HDAC jsou schopné heterodimerizace nebo existují
v různých komplexech – tvoří například větší komplexy
s korepresory jako jsou mSin3A, retinoblastomový pro-
tein anebo N-CoR/SMRT (12, 13). HDAC rovněž zpro-
středkují „silencing“ efekt DNA metylace vazbou metyl
CpG–vazebných proteinů (MeCP2) a DNA metyltransfe-
rázy 1 a 3a. HDAC jsou rozhodujícími členy korepreso-
rových komplexů vytvářených transkripčními faktory
účastnícími se leukemogeneze, jako jsou Bcl-6 a MLL
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a také fúzní geny AML1/ETO, PML/RARA a TEL/AML1
(14–16). 

Před 25 lety byla objevena schopnost butyrátu sodné-
ho reverzibilně inhibovat HDAC (18). V současnosti je
známo již několik tříd inhibitorů deacetyláz histonů
(HDACi) s různou chemickou strukturou, účinkem a spe-
cifitou (17, 19, 20). HDACi indukují zástavu růstu, dife-
renciaci a apoptózu v různém rozsahu. Byly derivovány
z přírodních i syntetických zdrojů, některé produkty by-
ly vybrány na základě screeningu malých molekul s účin-
kem inhibitorů HDAC (21, 22). Až na výjimky mohou být
rozděleny do skupiny derivátů kyseliny hydroxamové,
karboxylátů, benzamidů, elektrofilních ketonů a cyklic-
kých peptidů. Některé z nich mají polární konec, kterým
se váží ke kritickému zinkovému iontu v katalytickém
pouzdře HDAC, zatímco další část těchto látek blokuje
kanály vedoucí k aktivní části, jak bylo prokázáno krys-
talografickou metodou u SAHA – suberoylanilidu kyse-
liny hydroxamové (23). Nejčastěji klinicky testované lát-
ky z této skupiny byly butyráty – jednak díky snadné syn-
téze a také proto, že byly už léčebně podávány. Butyrát
sodný je nespecifický a již v malých dávkách značně to-
xický. Do nové generace látek jsou zařazeny SAHA, py-
roxamid, depsipeptid a MS-275, které jsou méně toxické
v dávkách potřebných pro inhibici HDAC. V nedávných
studiích byl popsán účinek dalšího inhibitoru HDAC,
valproové kyseliny (VPA), která se používá běžně u pa-
cientů s epilepsií; její účinek u této diagnózy však nesou-
visí s inhibicí HDAC (24). Publikovaná data ukazují, že
VPA je účinnější spíše u HDAC I. třídy než u HDAC II.
třídy (24).

Mohlo by se zdát, že HDAC nejsou vhodným cílem pro
terapii, protože jejich inhibicí může dojít k nespecifickým
zásahům do klíčových buněčných funkcí nemaligních bu-
něk. Studie monitorující pomocí expresního profilování
procento genů ovlivněných v eukaryotickém organismu
působením HDACi se výrazně liší, udávají se hodnoty
>5–20 % (25, 26). Funkční in vitro analýzy potvrdily, že
HDACi růst a přežívání normálních buněk neovlivňují.
Při studiu indukce apoptózy bylo popsáno, že nádorové
buňky na rozdíl od buněk normálních po podání HDACi
nepřežívají. Klíčovou roli pravděpodobně sehrávají reak-
tivní formy kyslíku (ROS), které jsou v normálních buň-
kách vychytávány thioredoxinem (TXN). Jeho exprese je
v těchto buňkách po podání HDACi zvýšena. Protože
v nádorových buňkách není TXN exprimován, ROS se
v nich akumulují a dochází ke zvýšení procenta buněk
podléhajících buněčné smrti (27). 

Významným průlomem při studiu HDACi bylo obje-
vení jejich schopnosti obejít (v kooperaci s retinoidy) abe-
rantní transkripční represi u akutní promyelocytární leu-
kemie (APL) s translokací t(11;17) (16, 18). APL slouži-
la jako první modelové onemocnění, na němž má HDAC
podíl. Tato forma leukemie je charakterizována zástavou
myeloidní diferenciace leukemických buněk v promyelo-
cytárním stadiu a je způsobena vznikem fúzních protei-
nů složených z části receptoru pro retinovou kyselinu
(RAR) a z části některého z dalších proteinů: PML (> 95

% případů) nebo PLZF (~ 5 % případů). Pacienti s APL
odpovídají na léčbu ligandem RAR, retinovou kyselinou
(RA). Na buněčné úrovni dochází k re-inicializaci progra-
mu diferenciace leukemických buněk, který prochází do
finální neutrofilní diferenciace a pak do fyziologické bu-
něčné smrti (29). RAR je transkripční faktor, který v ne-
přítomnosti RA asociuje s komplexem obsahujícím
HDAC a to vede k umlčení RA-cílových genů. Koncent-
race RA v buňkách uvolňuje HDAC-komplexy a umož-
ní navázat na cílové geny HAT. V případě APL udržují
fúzní proteiny vazbu HDAC-komplexů na RA-cílové ge-
ny, přičemž fyziologické koncentrace RA nejsou schop-
ny tuto vazbu odstranit. Vyšší, terapeutické dávky RA di-
sociují HDAC z RAR, fúzní proteiny jsou degradovány
a dochází k reaktivaci transkripce RA cílových genů.
PLZF/RAR neodpovídá na léčbu RA, ale v kombinaci
s HDACi dochází i u tohoto chimérického proteinu
k efektivní reaktivaci RA-cílových genů a k buněčné od-
povědi (30).

Fúzní proteiny přítomné u jiných typů leukemií mají
také schopnost vytvářet komplexy s HDAC. Příkladem je
AML1/ETO u AML-M2, který se váže na cílové geny
transkripčního faktoru AML1 a předpokládá se, že mění
jejich acetylační vzorec. Tato translokace je tvořena vše-
mi čtyřmi doménami původního proteinu ETO a DNA-
vazebnou doménou transkripčního faktoru AML1. Fúzní
partner ETO je schopen na sebe vázat korepresorové pro-
teiny N-CoR, mSin3A a HDAC-1 a -3 (31). Možným me-
chanismem funkce AML1/ETO v leukemických buňkách
je tedy zástava transkripce genů a blok v diferenciaci my-
eloidních buněk způsobený právě přítomností tohoto re-
presorového komplexu (32). Podobný mechanismus je
hypoteticky předpokládán také u aberantního transkripč-
ního faktoru TEL/AML1, neboť TEL má vazebná místa
pro N-CoR/SMRT a mSin3A a ty jsou schopny vázat
HDAC-3 (15).

Výsledky prvních klinických studií použití HDACi
u hematologických i nehematologických malignit ve fá-
zi I/II testování byly publikovány nedávno (19, 33). Vý-
sledky těchto studií jsou velmi nadějné a potvrzují nízkou
toxicitu HDACi v porovnání s momentálně používaný-
mi protinádorovými léky. Nízká toxicita vyplývá z malé-
ho ovlivnění normálních, nenádorových buněk inhibito-
ry deacetyláz histonů. Pravděpodobně se jedná o mecha-
nismus, jak byl popsán výše, zvýšenou kumulací ROS
v nádorových buňkách po podání HDACi (27). I naše in
vitro studie potvrzuje, že nedochází k apoptóze nebo změ-
ně imunofenotypu u linie odvozené od zralých nemalig-
ních lymfocytů po léčbě VPA v porovnání s liniemi od-
vozenými od ALL.

Vorinostat (suberoylanilid hydroxamová kyselina,
SAHA) vykazoval nízkou toxicitu u 41 pacientů v pokro-
čilém stadiu AML či MDS a zároveň 7 pacientů odpově-
dělo na léčbu. (34). MS-275 je derivát benzamidu, který
byl testován u 38 dospělých s akutní leukemií, kde se opět
potvrdila nízká toxicita a léčba indukovala acetylaci H3
a H4 histonů, expresi p21 a aktivaci kaspázy-3 v buňkách
kostní dřeně (35). Depsipeptid je HDACi s dlouhým bi-
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ologickým poločasem (80 hod.) a proto je podáván pou-
ze jednou týdně. Klinické studie u CLL a AML prokáza-
ly zvýšení acetylace histonů H3 a H4 a u několika paci-
entů bylo možno sledovat protinádorovou aktivitu léčby,
avšak nesplňující kritéria pro kompletní či parciální remi-
si (36). Depsipeptid byl také použit u dětských pacientů
s refrakterními solidními tumory, kdy se podařilo stano-
vit vhodnou dávku léku pro druhou fázi klinické studie,
ačkoliv nebyla pozorována objektivní odpověď na léčbu
u žádného z pacientů (37). U VPA (valproová kyselina)
v monoterapii nebo v kombinaci s ATRA se ukázal efekt
u pacientů s MDS a AML (38). Kombinace VPA s 5–aza-
cytidinem a ATRA byla testována u 53 pacientů s AML
či MDS, kde 42 % příznivě odpovědělo na léčbu. Dále
se ukázal fakt, že u responderů byla naměřena signifikant-
ně vyšší sérová koncentrace VPA než u non-responderů
(p < 0,005) (39). 

Objevují se i první studie, které se snaží ověřit účinek
HDACi v kombinaci s některými z konvenčních cytosta-
tik. Epirubicin je antracyklin, který vykazuje inhibiční ak-
tivitu vůči topoizomeráze II, a společně s VPA působí sy-
nergicky u solidních tumorů, kde byla pozorována proti-
nádorová aktivita u těžce předléčených pacientů (40). Po-
bobně i Vorinostat je schopný působit synergicky s Ida-
rubicinem. U 28 pacientů s refrakterní AML léčených tou-
to kombinací dosáhlo 23 % z nich příznivé léčebné odpo-
vědi (41). 

V loňském roce byl Vorinostat (SAHA) schválen U.S.
Food and Drug Administration (FDA) k použití při léčbě
kožního T-buněčného lymfomu ve stadiu progrese, relap-
su nebo po dvou prodělaných systémových terapiích (42).

Menší pozornost byla dosud věnována možnému účin-
ku HDACi u pacientů s ALL (43, 44). V naší práci jsme
sledovali vliv VPA v modelu dětských ALL s fúzním ge-
nem TEL/AML1. Přestože leukemie s t(12;21) tvoří 20–25
% všech dětských ALL, biologický mechanismus trans-
formace lymfoblastů onkogenem TEL/AML1 není zatím
ještě zcela objasněn. Tyto leukemie představují podsku-
pinu s dobrou prognózou, což je důvodem relativně ma-
lého zájmu na dalším zlepšovaní již tak dobrých výsled-
ků terapie. Je ale známo, že i v této skupině dochází k re-
lapsům a to zejména pozdním. Je tedy třeba dále hledat
další léčebné postupy i těchto nízcerizikových leukemií.

Přítomnost fúzního genu TEL/AML1 u pacientů s ALL
má empiricky ověřený vliv na klinické projevy onemoc-
nění, pokud se týká odpovědi na léčbu a krátkodobou pro-
gnózu (45). Předpokládáme tedy, že tento chimerický gen
hraje v leukemogenezi této genotypově definované pod-
skupiny důležitou úlohu. Z některých studií vyplývá je-
ho role jako dominantně negativního faktoru. Současně
se zdá, že se v lymfoidních buňkách podílí na vzniku pa-
tologického diferenciačního bloku, jehož následkem buň-
ky nedozrávají a jsou schopné neregulované proliferace.
Jako nejpravděpodobnější mechanismus funkce TEL/-
/AML1 se jeví vazba s komplexem korepresorů, který ob-
sahuje HDAC, a způsobuje tak změnu chromatinového
vzorce v promotorové oblasti genů s vazebným místem
pro protein AML1. 

V naší studii jsme se zaměřili na průkaz tohoto me-
chanismu. Kultivovali jsme B prekurzorové leukemické
buňky s HDACi (VPA, TSA – Trichostatin A), které jsou
schopné blokovat enzymatickou aktivitu HDAC (46).
V první části jsme potvrdili částečný posun v diferencia-
ci TEL/AML1 pozitivních leukemických buněk v porov-
nání s leukemickými buňkami s odlišným mechanismem
leukemogeneze (BCR/ABL, TEL/PDGFBR) a potvrdili
tak specifičnost účinku HDACi u této podskupiny ALL.
Analýzou buněčného cyklu jsme ukázali méně toxický
a více specifický efekt VPA oproti TSA u TEL/AML1 po-
zitivních buněk. Pomocí luciferázové eseje jsme funkč-
ně prokázali regulaci genu pro granzym B – za normál-
ních okolností regulovaného proteinem AML1 – hybrid-
ním proteinem TEL/AML1. Represní účinek proteinu
TEL/AML1 jsme odstranili využitím HDACi. Následně
jsme tento přístup využili pro identifikaci dalších cílových
genů proteinu AML1. Komplexní analýzou dat expresní-
ho profilování pacientů s ALL a ovlivněných (pomocí
VPA nebo TSA) vs neovlivněných buněk TEL/AML1 po-
zitivní buněčné linie jsme vybrali 24 genů, které jsou
u buněk TEL/AML1 pozitivního fenotypu „downregulo-
vané“ a po podání VPA dochází ke zvýšení jejich expres-
ní hladiny. U čtyř vybraných genů z této analýzy jsme po-
rovnali data z expresního profilování s kvantifikací ex-
prese pomocí qRT–PCR (46). Tyto výsledky potvrdily
správnost naší in silico analýzy. Vybrané geny jsou důle-
žitou součástí kaskád zodpovědných za buněčnou proli-
feraci a průchod buněčným cyklem a proto předpokládá-
me, že jejich potlačená exprese může mít za následek zá-
stavu vývoje lymfoidních buněk a zvýšenou proliferaci. 

HDAC jsou v současnosti jedním ze slibných cílů ve
vývoji cílených léčiv pro nádorovou terapii a HDACi prv-
ní generace již jsou v I/II fázi klinického testování. 

Naše výsledky dokládají, že pro léčbu HDACi je mož-
né hledat prostor i u dětských pacientů s akutní lymfob-
lastickou leukemií. I ve skupinách označovaných jako
nízcerizikové, které mají event–free survival (EFS) vyš-
ší než 90 %, stále zůstávají pacienti se špatnou odpovědí
na léčbu a pomalou dynamikou reziduální nemoci, kteří
směřují k relapsu onemocnění. Z našich převážně in vit-
ro výsledků vyplývá, že HDACi způsobují apoptózu a di-
ferenciaci leukemických buněk a ponechávají nepostiže-
né neleukemické lymfocyty. Zatím je předčasné s určitos-
tí tvrdit, ve které fázi léčby hledat místo pro uplatnění
HDACi, např. VPA. Dávky VPA testované v naší studii
odpovídají sérovým koncentracím u pacientů léčených
dlouhodobě bez vedlejších následků pro epilepsii. Užívá-
ní tohoto léku v humánní medicíně předurčuje VPA pro
testování u TEL/AML1 pozitivních pacientů s vysokým
rizikem relapsu. Jednou z variant je kombinace VPA s in-
tenzivní chemoterapií v průběhu prvního roku léčby. Dal-
ší variantou je dlouhodobá léčba u rizikových pacientů
v průběhu kompletní remise, případně v okamžiku zachy-
cení molekulárního relapsu. Ve stejné indikaci by se mo-
hla VPA objevit u TEL/AML1 pozitivních pacientů pro-
dělavších relaps a podstupujících transplantaci hemopo-
etických progenitorů. 
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Zajímavou představou by potom mohlo být ovlivnění
„leukemické kmenové buňky“ či buněk preleukemické-
ho klonu u dětí před vypuknutím nemoci – například
u identických dvojčat pacientů diagnostikovaných
s TEL/AML1 pozitivní leukemií. Tito sourozenci totiž
v sobě nesou buňky preleukemického klonu či leukemic-
kou kmenovou buňku“ a jsou ve velkém riziku propuk-
nutí identické TEL/AML1 pozitivní leukemie (47, 48).
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Seznam použitých zkratek

AL akutní leukemie
ALL akutní lymfoblastická leukemie 
AML akutní myeloidní leukemie
APL akutní promyelocytární leukemie
ASH American Society of Hematology
CLIP Childhood Leukaemia Investigation Prague
EFS event-free survival
FAB French-American-British classification 

of AML
HAT histon acetyltransferáza
HDAC histon deacetyláza
HDACi inhibitory deacetyláz histonů
Nalm-6 TEL/PDGFRB pozitivní leukemická linie
NC-NC EBV transformované zralé lymfocyty
OS overall survival
PDGFRB platelet derived growth factor receptor 

beta
RA retinoic acid
REH TEL/AML1 pozitivní leukemická linie
qRT-PCR real–time quantitative reverse

transcription–polymerase 
chain reaction

TSA Trichostatin A
VPA kyselina valproová
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