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menaquinol-cytochrome c oxidoreductase as an 
essential component for transporting electrons across 
the membrane from menaquinol to other specific 
subunit, cytochrome c (QcrC). Thus, the ability of 
mycobacteria to synthesize adenosine-5´-triphosphate 
is limited and energy generating machinery is disabled. 
The TCB molecule effectively fights drug-susceptible, 
MDR as well as XDR M. tuberculosis strains. The article 
briefly explains a mechanism of an anti-TB action related 
to the compounds containing a  variously substituted 
IPA scaffold and is focused on their fundamental 
structure-anti-TB activity relationships as well. Special 
consideration is paid to TCB indicating the importance 
of particular structural fragments for maintaining 
(or even improving) favourable pharmacodynamic, 
pharmacokinetic and/or toxicological properties. High 
lipophilicity of TCB might be regarded as one of the 
key physicochemical properties with positive impact 
on anti-TB effect of the drug. In January 2021, the TCB 
molecule was also involved in phase-II clinical trials 
focused on the treatment of Coronavirus Disease-19 
caused by Severe Acute Respiratory Syndrome 
Coronavirus 2.
Key words: Mycobacterium tuberculosis • drug-resistant 
tuberculosis • imidazo[1,2-a]pyridine-3-carboxamides • 
telacebec (Q203) • respiratory chain

Súhrn

Vysoká prevalencia rôznych foriem rezistentnej tu-
berkulózy (drug-resistant tuberculosis – DR-TB), vrá-
tane multirezistentnej tuberkulózy (multidrug-resis-
tant tuberculosis – MDR-TB) a  extenzívne rezistentnej 
tuberkulózy (extensively drug-resistant tuberculosis 
– XDR-TB), ktoré sú zapríčinené rezistentnými patogén-
mi Mycobacterium tuberculosis, rezultuje do silnejúcej 
hrozby terapeutickej neefektívnosti antituberkulotík 
(anti-TB) prvej línie. Imperatívom je preto projekcia 
nových vysokoúčinných (syntetických) liečiv proti 
senzitívnym a  aj rezistentným kmeňom mykobaktérií 
spôsobujúcim TB. V  tomto kontexte je mimoriadne 
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Summary

High prevalence and stronger emergency of various 
forms of drug-resistant tuberculosis (DR-TB), including 
the multidrug-resistant (MDR-TB) as well as extensively 
drug-resistant (XDR-TB) ones, caused by variously 
resistant Mycobacterium tuberculosis pathogens, 
make first-line anti-tuberculosis (anti-TB) agents 
therapeutically more and more ineffective. Therefore, 
there is an imperative to develop novel highly efficient 
(synthetic) agents against both drug-sensitive-TB 
and DR-TB. The exploration of various heterocycles 
as prospective core scaffolds for the discovery, 
development and optimization of anti-TB drugs remains 
an intriguing scientific endeavour. Telacebec (Q203; 
TCB), a molecule containing an imidazo[1,2-a]pyridine-
-3-carboxamide (IPA) structural motif, is considered 
a novel very promising anti-TB agent showing a unique 
mechanism of action. The compound blocks oxidative 
phosphorylation by inhibiting a  mycobacterial 
respiratory chain due to interference with a  specific 
cytochrome b subunit (QcrB) of transmembrane bc1 
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Philippines (6.0%), Pakistan (5.7%), Nigeria (4.4%), Ban-
gladesh (3.6%) and South Africa (3.6%)3).

Many forms of resistance of strains from Mycobacte-
rium sp., including M. tuberculosis, which is also known 
as Koch’s bacillus, to activity of drugs have been devel-
oped and can be found worldwide. The drug-resistant 
form of TB (DR-TB) is caused by the mycobacteria re-
sistant to at least one first-line anti-TB drug, i.e., iso- 
niazid (INH), rifampicin (RIF), pyrazinamide (PZA), or 
ethambutol (EMB). Polydrug-resistant TB (PDR-TB) in-
dicates the resistance of the mycobacterial organisms 
to more than one anti-TB drug, but not including both 
INH and RIF. The multidrug-resistant disease (MDR-TB) 
is caused by the mycobacterial pathogens resistant to 
at least INH and RIF. Original definition of extensively 
drug-resistant TB (XDR-TB) needs to be modified as all- 
-oral regimens become standard of care. The cause of 
pre-extensively (pre-extremely) drug-resistant TB (pre- 
-XDR-TB) is the existence of such MDR mycobacterial 
strains which are, in addition, resistant to any fluoro-
quinolone (FQ) or second-line injectable agent, i.e., 
amikacin (AK), kanamycin (KAN), or capreomycin 
(CAP). The XDR-TB form is caused by the mycobacteria, 
which show multidrug-resistance, and are resistant to 
any FQ and at least one of the second-line injectable 
anti-TB agents (AK, KAN, or CAP). The M. tuberculosis 
strains that possess resistance to all first-line anti-TB 
drugs as well as second-line anti-TB compounds are re-
ferred to as totally drug resistant (TDR-TB)4–6).

Globally, the TB incidence rate is falling. Howev-
er, the decline was much slower to reach a  required 
milestone of 20% reduction between 2015 and 20203). 
Moreover, the DR-TB disease continues to be a public 
health threat. The low success rates in the treatment of 
MDR-TB and XDR-TB, which account for 55% and 34%, 
respectively, led the World Health Organization (WHO) 
to conclude that MDR-/XDR-TB remained a very serious 
public health crisis3, 7).

Evidently, the development of therapeutically ef-
fective anti-TB molecules is imperative. Regarding this 
aim, the attention was paid to the class of compounds 
containing an imidazo[1,2-a]pyridine-3-carboxamide 
(IPA) structural motif8).

Those anti-TB agents showed excellent selective po-
tency against MDR-TB and XDR-TB as well as encour-
aging pharmacokinetics. The data indicated discovery 
of the molecules with promising attributes of synthet-
ic accessibility, no redox active moieties, impressive 
potency, unique mechanism of action and selectiv-
ity toward replicating MDR and XDR M. tuberculosis 
strains9–11), including M. tuberculosis H37Rv.

Besides, the imidazo[1,2-a]pyridine moiety is con-
sidered one of the most promising bicyclic 5–6-mem-
bered heterocyclic systems, which has been recognized 
as a “drug prejudice” scaffold due to its broad range of 
applications in medicinal chemistry. The moiety can be 
used for the design of anticancer, antimycobacterial, 
antileishmanial, anticonvulsant, antimicrobial, antiviral, 
antidiabetic, or insecticidal compounds12).

zaujímavé vedecky skúmať rôzne heterocykly ako 
perspektívne kľúčové štruktúry pre projekciu, vývoj 
a  optimalizovanie takýchto anti-TB-liečiv. Telacebek 
(Q203; TCB), molekula obsahujúca imidazo[1,2-a]- 
pyridín-3-karboxamidový (IPA) štruktúrny motív, je 
považovaný za veľmi sľubnú anti-TB-substanciu, ktorá 
sa vyznačuje unikátnym mechanizmom pôsobenia. 
Táto zlúčenina blokuje oxidatívnu fosforyláciu myko-
baktérií inhibíciou ich dýchacieho reťazca tak, že inter-
feruje so špecifickou podjednotkou, cytochrómom b 
(QcrB), ktorý je súčasťou transmembránovej bc1 mena- 
chinol-cytochróm c oxidoreduktázy. Tento komplex 
je kľúčovým komponentom podieľajúcim sa na trans-
membránovom transporte elektrónov z  menachinolu 
na ďalšiu špecifickú podjednotku, cytochróm c (QcrC). 
Schopnosť mykobaktérií syntetizovať adenozín-5´-tri-
fosfát je potom limitovaná a  súčasne sú významne 
obmedzené ich možnosti generovať energiu. TCB 
efektívne pôsobí proti susceptibilným, MDR- a aj XDR-
-kmeňom M.  tuberculosis. V  publikácii možno nájsť 
stručné vysvetlenie mechanizmu účinku zlúčenín obsa-
hujúcich IPA-fragment a aj hodnotenie vzťahov medzi 
ich štruktúrou a  anti-TB-aktivitou. Mimoriadna pozor-
nosť je venovaná významu jednotlivých štruktúrnych 
častí TCB z  pohľadu zachovania (alebo dokonca  
ďalšieho zlepšenia) výhodných farmakodynamických, 
farmakokinetických a/alebo toxikologických vlastnos-
tí. Vysoká lipofilita TCB by mohla byť považovaná za 
jednu z kľúčových fyzikálno-chemických charakteristík, 
ktoré pozitívne ovplyvňujú anti-TB-pôsobenie tohto 
liečiva. V januári 2021 vstúpil TCB aj do fázy II klinického 
skúšania orientovaného na liečbu ochorenia COVID-19 
(Coronavirus Disease-19), ktorého pôvodcom je koro-
navírus 2 vyvolávajúci ťažký akútny respiračný syndróm 
(Severe Acute Respiratory Syndrome Coronavirus 2).
Kľúčové slová: Mycobacterium tuberculosis • tu-
berkulóza rezistentná voči liečivám • imidazo[1,2-a]- 
pyridín-3-karboxamidy • telacebek (Q203) • dýchací 
reťazec

Introduction

Human tuberculosis (TB) is one of the oldest but still 
persistent diseases known to affect human lives. TB is 
not a disease caused by a single bacterium, but rather 
twelve closely related members of the Mycobacterium 
genus, termed the Mycobacterium tuberculosis complex 
(MTBC). The history of TB has been traced to the Stone 
Age Paleolithic Period, circa 3.3 million years ago. This 
airborne infectious-contagious and deadly disease, 
whose main cause is an obligate aerobic acid-fast 
Mycobacterium tuberculosis bacillus belonging into 
MTBC, reached epidemic levels in Europe and North 
America in the 18th–19th century1, 2).

In 2019, TB claimed approximately 1.2 million deaths 
in HIV-negative individuals and additional 208 000 
deaths among people suffering from HIV. Eight coun-
tries accounted for two thirds of the global total as 
follows: India (26.0%), Indonesia (8.5%), China (8.4%), 
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The expression of given oxidase in both M. tuberculosis 
and M. smegmatis is upregulated in response to hypox-
ia19). Comprehensive understanding of the protective 
role of a cytochrome bd type menaquinol oxidase in M. 
tuberculosis can be found in the recent paper of Masco-
lo and Bald (2020)20).

Indeed, the respiratory chain of M. tuberculosis has 
attracted attention as a  highly promising target for 
next-generation antimycobacterial agents. Some com-
pounds containing an IPA scaffold (Fig. 1) inhibit M. tu-
berculosis growth via a unique mechanism. The mole-
cules, including telacebec (TCB; Q203) (Fig. 2), target 
QcrB, which is a b subunit of the bc1 menaquinol-cyto-
chrome c oxidoreductase, as a part of ETC of the Myco-
bacterium13, 21). This subunit is regarded as a key player 
in the function of this bc1 complex because being able 
to coordinate actions of all segments of the complex22). 
Besides, the cytochrome b subunit is known as a bio-
logical (pharmacological) target of antimalarial drug 
atovaquone23).

If TCB will be successfully developed as an anti-TB 
drug, it might be therapeutically coupled with cyto-
chrome bd type menaquinol oxidase inhibitors, as au-
rachin D, which invokes bactericidal activity of TCB24). 
For clarification, inhibition of the bc1 menaquinol-cyto-
chrome c oxidoreductase by TCB forces the mycobac-
teria to switch to less energetically efficient cytochrome 
bd type menaquinol oxidase, which generates a proton 
motive force due to the release of protons after quinol 
oxidation. Concerned oxidase also facilitates metabolic 
adaptation of certain M. tuberculosis laboratory strains, 
including the H37Rv one, to imidazopyridine-type cyto-
chrome bc1 menaquinol-cytochrome c oxidoreductase 
inhibitors25).

Aurachins are myxobacterial 3-farnesyl-4(1H)-quino-
lone derived compounds initially described as respira-
tory chain inhibitors, more specifically as inhibitors of 
various cytochrome complexes26).

Mechanism of anti-tuberculosis action of substitut-
ed imidazo[1,2-a]pyridine-3-carboxamides

Cellular respiration is the process, in which an energy 
source (e.g., sugars, fatty acids, or amino acids) is ox-
idized, simultaneously reducing an electron accep-
tor (e.g., oxygen, nitrate, sulfur, or sulfate) to produce 
chemical energy for the synthesis of adenosine-5´-tri-
phosphate. In aerobic organisms, oxygen is the termi-
nal electron acceptor. The entire system forms the elec-
tron transport chain (ETC) containing specific electron 
carriers13).

Indeed, the M. tuberculosis pathogen strictly de-
pends on oxygen to multiply, and terminal oxidases 
are a vital part of the oxidative phosphorylation path-
way. Three very important druggable targets in a  re-
spiratory chain of M. tuberculosis have been identified, 
i.e., proton-pumping type II NADH dehydrogenase,  
cytochrome oxidase, and F1F0-ATP synthase, respec-
tively14).

Considering the second one, the bacterium possess-
es two aerobic respiratory branches, i.e., proton-pump-
ing cytochrome bc1-aa3 supercomplex consisting of 
a  transmembrane bc1 menaquinol-cytochrome c ox-
idoreductase (bcc/Qcr) and transmembrane aa3 cyto-
chrome c oxidase (CtaC-F) that are tightly associated, 
and bacteria-specific cytochrome bd type menaquinol 
oxidase. The bc1 menaquinol-cytochrome c oxidore-
ductase transfers electrons from menaquinol to aa3 cy-
tochrome c oxidase via the QcrC domain. The oxidase 
pumps protons across the membrane15). In M. tubercu-
losis, the genetic knockout of a cytochrome bc1-aa3 su-
percomplex resulted in slowed growth in vitro as well 
as partial attenuation in vivo16, 17).

The cytochrome bd type menaquinol oxidase, an in-
tegral membrane protein complex, is not only involved 
in fundamental bioenergetic maintenance, but also en-
hances resistance to oxidative and nitrosative stress18). 

Fig. 1. Brief overview on structure–anti-TB activity relationships connected with imidazo[1,2-a]pyridine-3-carboxamides
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Number: 1334719-95-7). The lack of chiral centre in the 
TCB molecule could be considered advantageous for 
the large‐scale synthesis.

Motamen and Quinn reported32) lipophilicity (CLOGP 
values calculated in silico, in fact) as a  critical proper-
ty, which showed the most difference between anti-TB 
drugs used clinically and anti-TB candidates in clinical 
trials. In addition, they observed a new TB space with 
more appropriate molecular weight (MW) values of the 
candidates (MW ≤ 500.00 Da), predicted lipophilicity 
(CLOGP) in an interval of –4.00 ≤ (compound’s) CLOGP 
≤ 3.00, as well as polar surface area (PSA) parameter var-
ied as follows: 30.00 Å2 ≤ (compound’s) PSA ≤ 150.00 Å2.  
The proposed TB space might be a useful and reliable 
guide to design new anti-TB compounds.

Regarding these in silico descriptors connected with 
a highly lipophilic TCB32), there could be a space to op-
timize pharmacokinetic, or toxicological properties of 
its derivatives while maintaining (or even potentiating) 
their anti-TB activity.

Fundamental SAR related to TCB might be summa-
rized briefly as follows27, 28, 31, 33, 34):
a)  Modification of chlorine position attached to an aro- 

matic ring, i.e., shift of the substituent from a 6-po-
sition to the 7-one, slightly improves efficiency 
against M. tuberculosis H37Rv replicating outside  
and inside macrophages. On the other hand, the  
designed positional isomer inhibits five different iso-
zymes belonging into a cytochrome P450 enzymes  
class.

     Introduction of other less lipophilic R1 and R2 sub-
stituents into a  structure of those potent anti-TB  
agents might be also possible (R1 = R2 = CH3, for ex-
ample) presuming quite extensive modification of 
a  lipophilic side chain, i.e., an N-(2-[4-substituted] 
phenoxy)ethyl moiety can be incorporated (Fig. 1).

b)  Introduction of an ionizable saturated ring between 
two aryl groups results in improved solubility under 
acidic conditions without anti-TB-activity loss. Even-
tual replacement of a cyclic piperidin-1,4-diyl moiety 
with a classical bioisosteric piperazin-1,4-diyl group 

Structure-anti-tuberculosis activity relationships 
connected with substituted imidazo[1,2-a]pyri-
dine-3-carboxamides and telacebec (Q203)

In regard to optimize the chemical structure of lead 
compounds containing an IPA moiety in order to im-
prove the efficiency of resulting derivatives against 
M. tuberculosis H37Rv replicating outside and inside 
macrophages as well as their pharmacokinetic proper-
ties, structure-anti-TB activity relationships (SAR) were 
investigated. Some of the key SAR findings might be 
summarized as follows (Fig. 1)27–30):
a)  Presence of a small alkyl chain (R1 substituent), espe-

cially a C2H5 group, appears to be the most favour-
able.

b)  6- or 7-Cl Atom (R2 substituent) enhances both an-
ti-TB activity and metabolic stability of the deriva-
tives compared to an unsubstituted compound, i.e., 
the molecule containing R2  =  H, or the substances 
containing a  highly lipophilic bulky substituent 
(R2 = Br, for example).

c)  Lipophilic side chain is pivotal for anti-TB efficiency, 
regardless of its length, or linearity.

d)  Substituted N-benzyl moiety within a lipophilic side 
chain is important but not critical for anti-TB activity.

e)  4´-OCF3-Phenylpiperidino group is the optimal 
choice regarding the selection of a substituent with-
in a lipophilic side chain. Basic moiety (X substituent) 
might be replaced with other nitrogen-containing 
heterocycles in the effort to maintain pharmacody-
namic properties and improve pharmacokinetic fea-
tures of resulting derivatives.

f )  Presence of a 3-C(O)NH group is essential for anti-TB 
activity, switching its position from 3 to 2 causes 
the decrease in anti-TB activity.

Further structural optimization of given IPA scaffold 
led to design31), in vitro and in vivo investigation of TCB 
(Fig. 2), chemically 6-chloro-2-ethyl-N-[(4-{4-[4-(triflu-
oromethoxy)phenyl]piperidin-1-yl}phenyl)methyl]- 
imidazo[1,2-a]pyridine-3-carboxamide (CAS Registry 

Fig. 2. Chemical structure of telacebec (TCB; Q203)
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TCB32, 38), the violations of these rules are not observed 
(nrot = 8, PSA = 58.87 Å2).

Indeed, the anti-TB agents do challenge established 
Ro5 that gives a  rough evaluation of the potential of 
a small molecule to be absorbed passively after oral ad-
ministration. The fact is that novel anti-TB compounds 
and promising clinical candidates are more lipophilic 
than first-line anti-TB drugs (INH, PZA, EMB), many an-
tibiotics, or other antibacterial chemotherapeutics35, 38). 
This may be due to interference of these highly lipophilic 
molecules with waxy mycobacterial cell wall containing 
high amount of lipids, long chains of mycolic acids, and 
peptidoglycan. Thus, it is not surprising that the wall acts 
as an impermeable barrier for hydrophilic agents35, 38).

High lipophilicity of TCB, an unattractive structure 
in terms of „classical“ Ro5, allows for strong drug-my-
cobacterial membrane interactions altering stability 
and functional integrity of the membrane due to the 
disruption of proton motive force and/or mycobacteri-
al efflux pumps32, 38). Thus, strict adherence to Ro5 may 
have resulted in the loss of opportunities in particularly 
for a difficult pathogen as M. tuberculosis.

Initial in vitro evaluations and clinical trials 
concerning telacebec (Q203)

The TCB molecule is an orally bioavailable substitut-
ed IPA that was invented at the Institute Pasteur Korea 
(Seongnam-si, Republic of Korea), a  biotech compa-
ny39). Following the results of  initial in  vitro screening, 
it was suggested that TCB might achieve good blood 
exposure in humans. As reported in early phases of 
the evaluation21), TCB did not inhibit hERG potassium 
channel, thus indicating its low potential for cardio-
toxicity. The molecule did not inhibit any of the cyto-
chrome P450 isoenzymes tested (CYP1A2, CYP2C9, CY-
P2C19, CYP2D6, and CYP3A4), nor did it induce human 
pregnane X receptor activation. In addition, TCB was 
not a substrate or an inhibitor for the efflux transporter 
P-glycoprotein, indicating drug’s low potential for drug- 
-drug interactions. Concerned derivative showed the 
bioavailability of 90% and terminal half-life of 23.4 hrs  
(in vivo experimental models)21).

In 2018, the compound was involved in an open-la-
bel randomized study (phase-IIa trial) under the Clin-
icalTrials.gov number NCT03563599 performed by 
Qurient Company (Qurient Co.) in Cape Town (Republic 
of South Africa) to evaluate early bactericidal activity, 
safety, tolerability, and pharmacokinetics of its multiple 
oral doses in treatment-naive patients with newly diag-
nosed RIF- and INH-sensitive sputum smear-positive 
pulmonary TB40).

Increasing doses of TCB were associated with great-
er reductions in viable mycobacterial sputum load. 
The use of TCB was connected with acceptable ad-
verse-event rates as well. In addition, there were ob-
served no serious adverse drug reactions and no ad-
verse drug reactions that might cause early withdrawal 
from the study21, 41).

leads to a slightly more active derivative against M. 
tuberculosis H37Rv, which shows, in addition, compa-
rable stability in human microsomes. However, the 
CYP enzymes are inhibited more efficiently by given 
classical bioisostere.

      The introduction of piperazin-1,4-diyl can be also 
considered in attempt to design effective and safe 
compounds presuming suitable modification of a li-
pophilic side chain. For example, acceptable pharma-
cokinetic and toxicological features of less lipophilic 
TCB derivatives, which might serve as promising 
lead compounds for further anti-TB drug discovery, 
development and optimization, can be achieved if 
an “original” 4´-OCF3-phenylpiperidino group is re-
placed with the 4-(cyclohexylmethyl)piperazin-1-yl 
one. Other approaches how to design desired deriv-
atives of TCB can be based on the incorporation of 
bicyclic structures containing nitrogen atoms – an 
octahydropyrrolo[3,4-c]pyrrole moiety can be taken 
into the consideration, for example.

c)  Classical bioisosteric replacement of a 4´-OCF3 group 
with a 4´-Cl, or 4´-F substituent provides slightly less 
potent derivatives, which, in addition, inhibit the CYP 
enzymes.

d)  Insertion of an etheric bridge or OCH2 group be-
tween a piperidin-1,4-diyl scaffold and phenyl moi-
ety causes slight decrease in anti-TB efficiency. Re-
placement of a piperidin-1,4-diyl fragment with the 
piperazin-1,4-diyl one and simultaneous incorpo-
ration of a CH2 chain between the basic group and 
aromate provides a similar conclusion.

e)  Extensive modification of a  linear lipophilic side 
chain might be also the alternative to find effective 
anti-TB compounds. The SAR related to the mole-
cules containing shorter fused ring moieties can be 
found in a research paper of Kang et al. (2017)28).

Optimising physicochemical properties of new an-
ti-TB candidates is one of key aspects in their discov-
ery to address the balance between anti-TB efficien-
cy, favourable pharmacokinetics and minimisation of 
off-target effects. Regarding the properties connected 
with the first-line anti-TB drugs and clinical candidates, 
a diverse range of molecular size, lipophilicity, hydro-
gen bond donors, hydrogen bond acceptors, and cal-
culated molar refraction can be found35).

The principle of minimal lipophilicity, or strict agree-
ment of compound’s properties with very well-known 
Lipinski’s Rule of 5 (Ro5), i.e., MW ≤ 500.00 Da, CLOGP 
≤ 5.00, or MLOGP ≤ 5.14 (values in silico in both cases), 
hydrogen bond donors (nOHNH) ≤ 5, and hydrogen bond 
acceptors (nON) ≤ 10, in order to achieve the improve-
ment in solubility, metabolic profiles, and off-target 
effects36) cannot be applied unconditionally to a high-
ly anti-TB effective TCB molecule, as its MW = 557.01, 
CLOGP = 7.64, nOHNH = 1, and nON = 6 clearly indicated35).

Furthermore, Veber’s rules add that the compounds 
with <  10 rotatable bonds (nrot) and PSA  <  140.00 Å2 
are more likely to be orally bioavailable37). Focusing on 
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