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myeloproliferative neoplasms
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SÚHRN: Myeloproliferatívne neoplázie (MPN) tvoria skupinu príbuzných klonálnych hematologických porúch s  prekrývajúcim sa 
fenotypom. Hlavným znakom MPN je nadprodukcia plne diferencovaných myeloidných buniek, chronický zápal a  riziko transformácie do 
sekundárnej akútnej myeloidnej leukémie. Klonálna proliferácia je riadená rôznymi somatickými mutáciami, najčastejšie mutáciami v géne 
kódujúcom Janusovu kinázu 2 (JAK2). Fenotypová diverzita, špecifi cká pre MPN, však nemôže prameniť len zo súčinnosti rôznych riadiacich 
mutácií s  mutáciami prídavnými, ktoré sú popisované u  pacientov s  MPN. Naopak, za heterogenitou MPN stojí celý rad genetických 
ako aj negenetických faktorov. Ako významný determinant, predovšetkým rozvoja klonálnej hematopoézy, sa ukazuje genetická 
predispozícia. Náš súhrnný článok prináša prehľad najnovších poznatkov týkajúcich sa komplexnosti patobio lógie chromozóm Filadelfia 
(Ph)-negatívnych MPN. 

KĽÚČOVÉ SLOVÁ: myeloproliferatívne neoplázie – JAK2 – CALR – MPL – genetická predipozícia – heterogenita MPN

SUMMARY: Myeloproliferative neoplasms (MPNs) represent a group of related clonal haematological disorders with overlapping phenotypes. 
The main typical features are excessive production of fully diff erentiated myeloid cells, chronic infl ammation and a tendency to transform to 
acute myeloid leukaemia. Clonal proliferation in MPN is driven by various somatic mutations, most notably involving Janus kinase 2 (JAK2). 
However, MPN phenotypic diversity cannot be explained only by cooperation of acquired driver mutations with additional somatic mutations 
detected in MPN patients. Indeed, MPN initiation and clinical phenotype is a product of complex interactions involving both genetic and 
non-genetic factors. Recently, genetic predisposition appeared as an important determinant of MPN pathophysiology, particularly of clonal 
expansion. This review provides insights into complex, newly emerging factors contributing to Philadelphia chromosome (Ph)-negative 
MPN pathobio logy. 
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logických a molekulárnych charakteristík 
sa rozdeľujú do 7 rozdielnych entít: chro-
nická myeloidná leukémia (CML), chro-
nická neutrofi lná leukémia (CNL), poly-
cytémia vera (PV, pravá polycytémia), 
primárna myelofi bróza (PMF), esenciálna 
trombocytémia (ET), chronická eosino-
fi lná leukémia (bližšie nešpecifi kovaná) 
a neklasifi kovateľné MPN [3].

Dameshekova koncepcia pôvodu 
MPN je postavená na neznámom my-
elostimulačnom faktore, ktorý je zod-
povedný za vznik týchto ochorení. 
Odvtedy sa vďaka pokrokom v techno-
lógiách molekulárnej bio lógie do veľkej 

a maturácie progenitorov, kedy pretrvá-
vajúci chronický zápal, remodelácia mik-
roprostredia kostnej drene a  postupná 
akumulácia genetických a  epigenetic-
kých zmien vedú k  blastickému zvratu 
a transformácii inak chronického ochore-
nia do sekundárnej akútnej myleoidnej 
leukémie (sAML). Hlavným genetickým 
faktorom tejto leukemickej transfor-
mácie sú prídavné mutácie vznikajúce 
spontánne alebo ako dôsledok mutagén-
nej liečby  [2]. MPN ochorenia vznikajú 
na podklade mutácií v  hematopoetic-
kej kmeňovej bunke (hematopoietic stem 
cell – HSC) a podľa klinických, histopato-

ÚVOD
Myeloproliferatívne neoplázie (MPN), 
popísané už v roku 1951 Dameshekom, 
sú fenotypovo rôznorodou skupinou klo-
nálnych chorôb, ktorá je charakterizo-
vaná zvýšenou proliferáciou aspoň jed-
ného z  myeloidných vývojových radov 
(erytrocytového, granulocytového alebo 
megakaryocytového) v  kostnej dreni. 
Nadmerne produkované plne diferen-
cované bunky si zachovávajú svoju ty-
pickú funkciu a nevykazujú známky roz-
siahlej dysplázie  [1]. Avšak najväčším 
rizikom MPN je, že postupom času môže 
dôjsť k poruche terminálnej diferenciácie 
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ptickú odpoveď  [9]. Zvýšená produkcia 
kyslíkových radikálov BCR-ABL1-pozi-
tívnymi bunkami vedie k nestabilite ge-
nómu a leukemogenéze [10].

Do klasických, avšak Ph-negatív-
nych MPN (BCR-ABL1  negatívne MPN), 
sa zaraďujú PV, ET a PMF. U väčšiny prí-
padov sú identifikované „driver“ mu-
tácie v  génoch kódujúcich Janusovu 
kinázu 2  (JAK2)  [11–14], kalretikulín 
(CALR)  [15,16] alebo trombopoetínový 
receptor (TPOR, označovaný aj ako 
MPL z angl. myeloproliferative leukemia 
virus) [17,18]; mutácie CALR a MPL sa vy-
skytujú u ET a PMF a len výnimočne u PV. 
Napriek niektorým spoločným klinic-
kým, patologickým a molekulárnym cha-
rakteristikám sa PV, ET a PMF vyznačujú 
veľkou variabilitou s ohľadom na možné 

nie objavuje v skoršom veku ako v gene-
rácii predchádzajúcej [6,7]. Táto kohorta 
pacientov môže niesť jednu alebo nie-
koľko dedičných kooperujúcich mutácií 
s neúplnou penetranciou, čím je podpo-
rovaná existencia predispozičného fak-
tora prispievajúceho nielen k prepuknu-
tiu MPN ale aj jeho modulačného efektu 
na celkový fenotyp ochorenia.

Medzi klasické MPN patrí CML. Jej ty-
pickým cytogenetickým nálezom je chro-
mozóm Filadelfia (Ph) vznikajúci reciproč-
nou translokáciou t(9;22) [8]. Dôsledkom 
tejto výmeny vzniká fúzny onkogén BCR-
-ABL1 kódujúci konštitutívne aktívnu ty-
rozínovú kinázu aktivujúcu spletité sig-
nálne dráhy, ktoré zvyšujú proliferačný 
potenciál mutovaných buniek a zároveň 
znižujú ich adhezívnu schopnosť a apo-

miery objasnila molekulárna podstata 
MPN a vytvorila sa komplexná knižnica 
kauzálnych alebo tzv. „driver“ (riadia-
cich) mutácií vedúcich k  MPN. Väčšina 
MPN sa javí ako sporadická a býva ob-
vykle dia gnostikovaná v  piatej až šies-
tej dekáde života. Avšak pribúdajúce 
štúdie ukazujú, že existuje skupina MPN 
pacientov, u  ktorých nástup ochore-
nia nastáva v podstatne mladšom veku 
a že rôzne hematologické malignity sa 
môžu častejšie vyskytovať v rámci rodo-
kmeňa jednej rodiny [4,5]. Zdá sa, že toto 
klastrovanie MPN v rámci rodín nie je ná-
hodné; až 7,6 % zdanlivo sporadických 
MPN má naopak familiárne pozadie [6]. 
Diskutovaným javom je aj fenomén tzv. 
anticipácie, ktorý popisuje stav, kedy sa 
v každej nasledujúcej generácii ochore-

Obr. 1. Všeobecný mechanizmus JAK2 signálnej dráhy za fyziologických podmienok (A): po väzbe cytokínu k receptoru 
dochádza k jeho dimerizácii, následnej trans- a autofosforylácii JAK2 kinázy, ktorá ďalej fosforyluje tyrozínové zvyšky receptora. 
Tie poskytujú väzbové miesta pre STAT signálne molekuly, ktoré dimerizujú a vo fosforylovanej forme sa presúvajú do jadra, kde 
pôsobia ako transkripčné faktory génov zabezpečujúcich proliferáciu a prežívanie buniek. Patofyziologická JAK2 signalizácia 
v prípade JAK2 mutácií (B) a mutácií MPL receptora (C) vedie ku konformačným zmenám JAK2 alebo MPL receptora, následnej 
konštitutívnej aktivácii JAK2/STAT signálnej dráhy a nadmernej produkcii rôznych krvných elementov. Naopak, sekretovaný 
mutovaný CALR (mCALR) sa ako „falošný“ cytokín viaže na MPL (D), aktivuje ho, čo u buniek exprimujúcich MPL a súčasne 
mCALR vedie k trvalej aktivácii JAK2/STAT5 signalizácie. 
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Dôsledkom mutácií dochádza k  strate 
KDEL motívu zodpovedného za orga-
nelovo-špecifi ckú lokalizáciu kalretiku-
línu v endoplazmatickom retikule. Mu-
tovaný kalretikulín (mCALR) sa naopak 
viaže na MPL, aktivuje ho a následne tak 
sprostredkováva nadmernú aktiváciu 
JAK2/ STAT signálnej dráhy (obr. 1). Mu-
tovaný kalretikulín vykazuje slabú väzbu 
s G-CSFR, ale neviaže sa na EPOR, čo má 
za následok špecifi ckú asociáciu CALR 
mutácií s ET a PMF, ale nie s PV. CALR mu-
tácie sa rozdeľujú do dvoch typov. Nad-
mernú väčšinu tvoria mutácie typu 1 
(delécia 52  bázových párov) prevláda-
júce u  pacientov s  dia gnostikovanou 
PMF, naopak mutácie typu 2  (inzercia 
5 bázových párov) sa vo veľkej miere vy-
skytujú u pacientov s ET [15,16]. Mutácie 
typu 1 majú agresívnejší ráz vzhľadom 
na robustnejší zásah do DNA; ET pa-
cienti s týmito mutáciami častejšie prog-
redujú do myelofibrózy na rozdiel od 
ET pacientov s mutáciami typu 2, ktoré 
sú spájané s  miernejším priebehom 
ochorenia [27]. 

MPL mutácie
Najmenej frekventovanými „driver“ mu-
táciami u  klasických Ph-negatívnych 
MPN sú aktivujúce mutácie v géne kó-
dujúcom MPL  [17,18]. MPL viaže na 
povrchu buniek trombopoetín a  zo-
hráva tak kľúčovú úlohu v procese me-
gakaryopoézy a  tvorbe krvných do-
štičiek  [28,29]. MPL mutácie vedú ku 
konformačným zmenám receptora, 
ktoré vyústia do jeho aktivácie a násled-
nej konštitutívnej aktivácie JAK2/ STAT 
signálnej dráhy a k cytokínom-nezávis-
lému rastu buniek (obr. 1)  [17,18]. Naj-
častejšími mutáciami sú zámeny trypto-
fánu v pozícii 515 (MPL W515), ktoré sa 
vyskytujú výhradne u  ET a  PMF s  pre-
valenciou 1, resp. 5 % [18] a sú spájané 
so zvýšeným rizikom myelofibrotickej 
transformácie u ET [30]. Iná mutácia po-
stihujúca MPL, MPL S505N, bola popí-
saná ako vrodená mutácia asociovaná 
s familiárnou trombocytózou a následne 
aj ako získaná mutácia vo vzácnych 
prípadoch ET [31,32].

panziu buniek  [11–14]. JAK2  V617F 
mutácia je prítomná u 95 % pacientov 
s  PV a  u  približne 50–60  % pacientov 
s ET a PMF. Klinická a fenotypová hete-
rogenita pacientov nesúcich JAK2 V617F 
mutáciu, v rozmedzí od často asympto-
matickej ET, cez chronickú myeloprolife-
ráciu až po agresívnejšiu formu PMF so 
zlou prognózou, je veľmi pozoruhodný 
a  doposiaľ nie celkom ozrejmený as-
pekt. Svoju úlohu hrá čiastočne podiel 
mutovanej JAK2 V617F k celkovej JAK2, 
označovaný aj ako alelová záťaž (allele 
burden)  [23]. Nižšia V617F alelvá záťaž 
(zvyčajne okolo 25  %) je typická pre 
ET, vyššia (≥ 50 %) pre PV. Úplná V617F 
homozygozita (alelová záťaž 100  %), 
ktorá vzniká mitotickou rekombináciou 
a vedie tak k získanej uniparentálnej di-
zómii (aUPD) chromozómu 9, je spájaná 
s  PV, post-PV a  post-ET myelofi brózou. 
Prítomnosť nízkej frekvencie JAK2 V617F 
mutácie (≤ 2 %) u zdravých jedincov bez 
preukázaných hematologických abnor-
malít (s  tzv. klonálnou hematopoézou 
s neurčitým potenciálom, clonal hemato-
poiesis of indeterminate potential – CHIP), 
s  incidenciou až 0,2  %, je ďalším uka-
zovateľom komplexnej patofyziológie 
MPN [24]. 

U 1–2  % PV pacientov, väčšinou 
JAK2  V617F negatívnych, sa vyskytujú 
mutácie v exóne 12 JAK2 génu [25]. Do-
teraz bolo v exóne 12 identifi kovaných 
vyše 40  rôznych mutácií, zahŕňajúcich 
delécie, inzercie, duplikácie a  zámeny, 
ktoré spôsobujú zvýšenú aktiváciu 
JAK2/ STAT signálnej dráhy. Tieto mutá-
cie sú výlučne asociované s izolovanou 
erytrocytózou. Ukazuje sa však, že ri-
ziko vzniku trombózy ako aj transformá-
cie do PMF alebo sAML je u tejto pod-
skupiny PV porovnateľné s PV pacientmi 
s mutáciou JAK2 V617F [25].

CALR mutácie
Kalretikulín je chaperónový proteín, 
ktorý reguluje homeostázu vápnika 
a zbaľovanie novosyntetizovaných pro-
teínov [26]. Mutácie v CALR géne sa vy-
skytujú približne v  30  % prípadov ET 
a  PMF a  výnimočne u  pacientov s  PV. 

riziká trombotických a krvácavých kom-
plikácií ako aj na riziko progresie do leu-
kémie. Heterogenitu MPN podľa všet-
kého ovplyvňuje celý rad faktorov 
zahŕňajúci: prídavné somatické mutácie 
(vrátane poradia v  akom boli získané), 
genetickú predispozíciu, charakteristiky 
samotného pacienta a zmeny v mikro-
prostredí kostnej drene [19].

SOMATICKÉ „DRIVER“ 
MUTÁCIE 
U Ph-NEGATÍVNYCH MPN
Somatické „driver“ mutácie v  JAK2, 
[11–14], CALR [15,16] a MPL [17,18] vzni-
kajú v HSC a vedú k neadekvátnej aktivá-
cii JAK2/ STAT (signal transducer and ac-
tivator of transcription) signálnej dráhy 
(obr.  1), čo poskytuje bunkám mye-
loidnej línie selektívnu proliferačnú vý-
hodu. Iniciačná mutácia v  JAK2  géne, 
ktorá je najčastejšou „driver“ mutáciou 
u  Ph-negatívnych MPN, pritom vzniká 
podľa novo publikovaných poznatkov 
veľmi skoro, v  detskom alebo adoles-
centnom veku alebo dokonca prena-
tálne („pre-dia gnostická“ fáza ochore-
nia) a  môže trvať desiatky rokov, než 
dôjde k  rozvoju signifikantnej klonál-
nej frakcie a  nástupu „dia gnostickej“ 
fázy MPN [20,21].

JAK͸ VͼͷͽF a JAK  exón 
ͷ͸ mutácie
JAK2  je súčasťou rodiny nereceptoro-
vých tyrozínových kináz. Väzbou ligandu 
na cytokínové receptory: erytropoetí-
nový receptor (EPOR), MPL a  receptor 
pre kolónie granulocytov stimulujúci 
faktor (G-CSFR) sa prostredníctvom fos-
forylácie JAK2  aktivuje signálna dráha 
odovzdávajúca signál prevažne cez tran-
skripčné faktory rodiny STAT (predovšet-
kým STAT1, 3 a 5), ktoré v jadre spúšťajú 
expresiu rôznych génov ovplyvňujúcich 
diferenciáciu, proliferáciu a  prežívanie 
hematopoetických buniek [22] (obr. 1). 
Bodová mutácia v exóne 14 JAK2 génu 
vedúca k  aminokyselinovej zámene 
V617F spôsobuje konštitutívnu aktivá-
ciu JAK2  kinázy aj v  neprítomnosti cy-
tokínov a  tým stimuluje klonálnu ex-
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cientov pomocou sekvenovania novej 
generácie (next generation sequencing – 
NGS) je uvedený v tab. 1.

Jednými z  najčastejších mutácií, vy-
skytujúcich sa u  všetkých subtypov 
MPN, sú mutácie génov kódujúcich epi-
genetické modifikátory DNA: Tet me-
tylcytozín dioxygenázu 2  (TET2)  [43] 
a  DNA (cytozín-5)-metyltransferázu 3A 
(DNMT3A)  [44]. Tieto mutácie zvyšujú 
potenciál sebaobnovy HSCs. Ich prog-
nostický význam u  MPN nie je celkom 
objasnený. Ukázalo sa však, že poradie 
ich získania s  ohľadom na zisk „driver“ 
mutácie JAK2 V617F, ovplyvňuje feno-
typ MPN. Ak JAK2 V617F mutácia vzniká 
ako prvá, s  väčšou pravdepodobnos-
ťou dôjde k rozvoju PV ako ET. Naopak, 
ak mutácie v TET2  a  DNMT3  predchá-
dzajú vzniku JAK2 V617F mutácie, prav-
depodobnejší je fenotyp ET [45, 46]. Prí-
davné mutácie ďalších epigenetických 
regulátorov remodelujúcich chromatín 
ako ASXL1  (additional sex comb-like 1)
 a  EZH2  (enhancer of zeste homolog 2) 
sú častejšie u PMF a bývajú asociované 
s horšou prognózou a zvýšeným rizikom 
transformácie do sAML [41].

Prídavné mutácie faktorov kontro-
lujúcich zostrih mRNA (napr. SF3B1, 
SRSF2 a U2AF1) sa vyskytujú u PMF a ET, 
zriedkavo u PV. Ich úloha v patogenéze 
MPN nie je zrejmá, ale pravdepodobne 
súvisí s narušením normálneho zostrihu 
mRNA celého spektra génov. Mutácie 

cie, poukazuje na úlohu dedičného fak-
tora u  MPN. Tento faktor sám o  sebe 
nevedie k  vzniku MPN, ale predispo-
nuje k  zisku somatických MPN mutá-
cií a/ alebo mení vývoj a fi nálny fenotyp 
MPN [34]. 

Postupne sa tak odhaľuje komplexné 
pozadie MPN bio lógie, kedy genetická 
predispozícia v súčinnosti s ďalšími ge-
netickými a  negenetickými faktormi 
ovplyvňuje riziko vzniku a fenotyp MPN. 

GENETICKÉ FAKTORY 
OVPLYVŇUJÚCE 
HETEROGENITU 
Ph-NEGATÍVNYCH MPN
Somatické mutácie kooperujúce 
s „driver” mutáciami
Okrem „driver“ mutácií sa u MPN pacien-
tov popisuje aj výskyt prídavných soma-
tických mutácií, ktoré nie sú špecifi cké 
pre MPN, ale objavujú sa aj u iných he-
matologických malignít (ako napr. mye-
lodysplastický syndróm – MDS a AML). 
Jedná sa o  získané mutácie génov kó-
dujúcich epigenetické modifi kátory, fak-
tory dôležité pre zostrih mRNA, niektoré 
transkripčné faktory alebo signálne mo-
lekuly  [40,41]. Súčasný výskyt rôznych 
prídavných mutácií u jedného pacienta 
je možný, pričom platí, že zvyšujúci sa 
počet prídavných mutácií negatívne 
ovplyvňuje prežívanie a  zvyšuje riziko 
leukemickej transformácie  [42]. Príklad 
panelu génov vyšetrovaných u MPN pa-

„Triple“ negatívne 
a biklonálne MPN
Asi 10  % pacientov s  MPN, predovšet-
kým s ET a PMF, je negatívnych na prí-
tomnosť vyššie uvedených „driver“ mu-
tácií v JAK2, CALR a MPL. Tieto prípady 
označujeme ako tzv. „triple“ negatívne 
MPN [2]. Zatiaľ čo „triple“ negatívna ET 
je skôr benígnym ochorením, „triple“ ne-
gatívna PMF má veľmi agresívny klinický 
priebeh a zlú prognózu s viac ako 30 % 
pravdepodobnosťou leukemickej trans-
formácie. V  malej časti „triple“ negatív-
nych MPN boli popísané nekanonické 
mutácie v  JAK2  (napr. V625F, F556V), 
MPL (napr. S204P, Y591N) alebo v géne 
SH2B3  (napr. E208Q, D231fs), ktorý kó-
duje negatívny regulátor aktivácie JAK2. 
Často sa však jedná o vrodené varianty 
a nie o varianty získané [33–35]. 

Vo väčšine prípadov MPN s identifi ko-
vanými „driver“ mutáciami v JAK2, CALR 
alebo MPL sa ich koexistencia u jednot-
livca vylučuje. Existujú však aj pacienti, 
u ktorých bol popísaný súčasný výskyt 
mutácií JAK2 V617F/ JAK2 exón 12  [36], 
JAK2/ CALR [37], JAK2/ MPL [36,37] a oje-
dinele i CALR/ MPL [38]. Jedná sa o biklo-
nálne MPN, vyznačujúce sa prítom-
nosťou dvoch „driver“ mutácií v  dvoch 
nezávislých klonoch  [39]. Toto zistenie 
spoločne s popisovanými rozdielmi v kli-
nických prejavoch u  jednotlivých čle-
nov rodín s familiárnym výskytom MPN, 
ktorí často nesú aj rôzne „driver“ mutá-

Tab. 1. NGS (next generation sequencing) myeloidný panel. Prehľad génov, rozdelených podľa ich funkcie, ktoré sú 

indikované k vyšetreniu u pacientov s MPN. 

(zdroj: https://www.illumina.com/products/by-type/clinical-research-products/trusight-myeloid.html#gene-list)

Úloha kódovaného proteínu Analyzované gény

DNA metylácia DNMT3A, IDH1, IDH2, TET2

Remodelácia chromatínu ASXL1, ATRX, BCOR, BCORL1, EZH2, KDM6A, MLL, NPM1 

Zostrih mRNA SF3B1, SRSF2, U2AF1, ZRSR2

Regulácia transkripcie CEBPA, CUX1, ETV6/TEL, GATA1, GATA2, IKZF1, RUNX1, SETBP1 

Bunková signalizácia ABL1, BRAF, CALR, CBL, CBLB, CBLC, CSF3R, FLT3, JAK2, JAK3, KIT, KRAS, MPL, MYD88, NOTCH1, NRAS, 
PDGFRA, PTPN11

Tumorové supresory CDKN2A, FBXW7, PHF6, PTEN, TP53, WT1 

Protoonkogény GNAS, HRAS

Kohezínový komplex RAD21, SMC1A, SMC3, STAG2
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lácii. Najčastejšími zámenami boli L393V, 
R1063H a N1108S. Autori zároveň uká-
zali, že prítomnosť dodatočných variant 
v  JAK2 géne u JAK2 V617F pozitívnych 
pacientov výrazne zvyšuje kumulatívne 
riziko progresie do sAML v porovnaní so 
skupinou JAK2  V617F pozitívnych pa-
cientov bez týchto variant. 

Zaujímavosťou je, že niektoré z identi-
fi kovaných variant boli už predtým po-
písané samostatne alebo v  kooperá-
cii s  inou JAK2  mutáciou vo vzácnych 
prípadoch hereditárnej trombocytózy 
(napr. S593C  [63], S755R/ R938Q  [63] 
a  L815P/ V1123G  [64]) alebo erytro-
cytózy (E846D/ R1063H  [65]). Funkčná 
štúdia E846D a  R1063H JAK2  mutá-
cií ukázala, že každá mutácia samo-
statne má mierny dopad na aktiváciu 
JAK2/ STAT signalizácie a k rozvoju pato-
logického fenotypu dochádza až pri ich 
vzájomnej kooperácii [65]. Rozdielny kli-
nický fenotyp (erytroidná hyperplázia 
vs. trombocytóza) pravdepodobne pra-
mení z kvalitatívnych rozdielov v násled-
nej JAK2/ STAT signalizácii, napr. z odliš-
nej miery aktivácie jednotlivých molekúl 
STAT (STAT5  vs. STAT1) alebo z  prípad-
nej aktivácie alternatívnych signálnych 
dráh. 

ĎALŠIE FAKTORY 
OVPLYVŇUJÚCE 
HETEROGENITU 
Ph-NEGATÍVNYCH MPN
Charakteristiky pacienta
Fenotyp MPN a jeho prognóza sú ovplyv-
nené aj vekom, pohlavím a komorbidi-
tou pacienta. Výskyt MPN sa všeobecne 
zvyšuje s  vekom, pričom medián veku 
nástupu PV je 65  rokov, 68  rokov u  ET 
a 70 rokov u PMF [66]. So zvyšujúcim sa 
vekom zároveň stúpa riziko trombotic-
kých komplikácií a progresie ochorenia. 
To pravdepodobne súvisí s  celkovým 
vplyvom starnutia a  hromadenia voľ-
ných radikálov (teória oxidačného stresu 
a starnutia) na akumuláciu somatických 
mutácií a  rozvoj klonálnej hematopo-
ézy [67,68]. Nie je prekvapením, že bola 
popísaná významná asociácia medzi faj-
čením a rozvojom MPN [69]. V priebehu 

trhuje ich bio logický význam v  regulá-
cii hematopoézy a  patogenéze MPN. 
Presné bio logické mechanizmy, ktoré 
spojujú vyššie zmienené vrodené poly-
morfi zmy s  vývojom MPN sú predme-
tom intenzívneho výskumu. 

Najnovšie štúdie ukazujú, že gene-
tická predispozícia u MPN má polygénny 
charakter  [57,58]. Rozsiahla celogenó-
mová asociačná štúdia (genome-wide 
association study – GWAS) odhalila cel-
kom 17  nezávislých rizikových loku-
sov, s  mnohými rizikovými variantami 
identifikovanými v  kódujúcich, nekó-
dujúcich alebo regulačných oblastiach 
génov  [57]. Niektoré rizikové varianty 
pritom priamo ovplyvňujú bio logické 
vlastnosti HSCs súvisiace s  dĺžkou te-
lomér (v  TERT), odpoveďou na poško-
denú DNA (v ATM, CHEK2) a s potenciá-
lom sebaobnovy (v  GFI1B). Ďalej bolo 
ukázané, že v  dôsledku mitotickej re-
kombinácie a  straty heterozygozity sa 
rizikové varianty dostávajú do homozy-
gotného stavu, ktorý môže znamenať 
proliferačnú výhodu a  podporovať tak 
následnú klonálnu selekciu [58]. Viac ako 
50 vzácnych vrodených variant lokalizo-
vaných v 7 rôznych lokusoch (MPL, ATM, 
TM2D3, FH, NBN, MRE11 a SH2B3) vyka-
zuje asociáciu so zvýšenou náchylnos-
ťou ku klonálnej hematopoéze [58].

Zárodočné mutácie v JAK  géne 
Vďaka celogenómovému sekvenovaniu 
boli v JAK2 géne odhalené vzácne záro-
dočné varianty, ktoré sa vyskytujú samo-
statne alebo spoločne s JAK2 V617F mu-
táciou u pacientov s PV, myelofi brózou 
alebo neutrofíliou  [59–61]. Ukazuje sa, 
že tieto varianty kooperujú s JAK2 V617F 
mutáciou, amplifi kujú kinázovú aktivitu 
mutovaného JAK2  enzýmu, čo môže 
taktiež prispievať k  fenotypovej hete-
rogenite. Nedávna štúdia kohorty asi 
2 000 MPN a AML pacientov z MD Ander-
son Cancer Center odhalila prítomnosť 
35 rôznych variant JAK2 distribuovaných 
v rámci celého génu; u väčšiny z nich bol 
potvrdený dedičný pôvod  [62]. Výskyt 
týchto variant bol pritom častejší u pa-
cientov s MPN a AML než v zdravej popu-

SF3B1 zvyšujú riziko progresie ET do my-
elofi brózy [47]; mutácie SRSF2 sú u pa-
cientov s PMF asociované so zníženým 
prežívaním a zvýšeným rizikom transfor-
mácie do sAML [48]. 

Mutácie transkripčných faktorov ako 
napr. tumorového proteínu 53 (TP53) [40],  
(runt-related transcription factor 1)  [49] 
alebo NF-E2 (nuclear factor erythroid–2) 
[50] sú vo väčšine prípadov asociované 
s  leukemickou transformáciou MPN. 
Kým mutácie TP53 narúšajú jeho fyzio-
logickú úlohu v indukcii opravy poško-
denej DNA a apoptózy, mutácie NF-E2, 
ktorý reguluje diferenciáciu a maturáciu 
buniek erytroidnej a  megakaryocytár-
nej línie, poskytujú bunkám ďalšiu proli-
feračnú výhodu. Rovnako tak somatické 
mutácie v génoch kódujúcich ďalšie sig-
nálne molekuly (napr. NRAS) sú typické 
pre MPN progredujúce do leukémie [51].

Genetická predispozícia 
Je dlhodobo známe, že riziko vývoja 
MPN sa u  prvostupňových príbuzných 
pacienta s MPN zvyšuje 5–7× [5], čo in-
dikuje prítomnosť vrodeného genetic-
kého faktora podieľajúceho sa na roz-
voji ochorenia. Predpokladá sa pritom, 
že vrodená predispozícia zohráva svoju 
úlohu pred ale aj po získaní somatických 
„driver“ mutácií. 

Prvým predispozičným faktorom 
identifikovaným u  MPN bol haplotyp 
JAK2  46/ 1  [52]. Haplotyp JAK2  46/ 1  sa 
rozkladá na chromozóme 9, zahŕňa sadu 
génov spoločne s  JAK2 génom a obsa-
huje niekoľko polymorfi zmov vo väzbo-
vej nerovnováhe. Minimálne jednu rizi-
kovú alelu tohto haplotypu nesie 56 % 
MPN pacientov  [53]. Ďalšie identifi ko-
vané predispozičné polymorfi zmy, ktoré 
zvyšujú riziko MPN boli popísané v gé-
noch zapojených napr. do bunkového 
starnutia (TERT), epigenetickej regulá-
cie (TET2), kontroly bunkového cyklu 
a opravy DNA (CHEK2, ATM), JAK2/ STAT 
signálnej transdukcie (SH2B3) a  regu-
lácie transkripcie (GFI1B, PINT, MECOM 
a  HBS1L-MYB)  [54–56]. V  niektorých 
z  týchto génov sú pritom popisované 
aj prídavné somatické mutácie, čo pod-
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Obr. 2. Dynamický proces vývoja MPN. Doposiaľ prezentovaný, klasický model, model (A), ktorý popisuje, že penetrancia 
MPN závisí od veku jedinca, typu mutácií a komplexných interakcií dedičného faktora, mikroprostredia kostnej drene 
a environmentálneho prostredia, ktoré sa spoločne podieľajú na konverzii polyklonálnej hematopoézy na monoklonálnu, 
s možným medzistupňom v podobe CHIP. Nadmerná klonálna expanzia so sebou prináša riziko vzniku ďalších mutácií (napr. 
v génoch špecifi ckých pre AML – NRAS, FLT3, TP53, RUNX1, NF-E2 a i. [49]) a transformácie do sAML. Nový model (B) založený 
na retrospektívnej analýze buniek krvotvorných línií dospelých pacientov až po embryogenézu [20,21]. Model ukazuje, že 
získanie „driver“ JAK2 V617F (príp. DNMT3A) mutácie sa dá vystopovať až do prenatálneho obdobia. Následne dochádza 
k veľmi pomalej expanzii mutovaného klonu a trvá desiatky rokov, než klonálna frakcia dosiahne 1 %. Rýchlosť klonálnej 
expanzie a akvizície ďalších mutácií rozhoduje o klinickej manifestácii ochorenia. 
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ZÁVER
Rozvoj MPN a  ich prípadná progresia 
do sAML je dlhotrvajúci a niekoľkostup-
ňový proces asociovaný s klonálnou se-
lekciou mutovaných HSCs (obr. 2). Mo-
lekulárna dia gnostika a  bio lógia spolu 
s  rozsiahlymi epidemiologickými štú-
diami významným spôsobom rozšírili 
naše poznatky o patogenéze MPN. Uka-
zuje sa, že genetické pozadie jedinca vy-
tvára základ pre familiárnu predispozíciu 
k  rozvoju MPN. Vrodené rizikové alely 
môžu modulovať bio logické vlastnosti 
HSCs a tým im poskytovať selekčnú vý-
hodu. Na podklade mitotickej rekom-
binácie a  homozygotizácie rizikových 
alel a  v  súčinnosti so získanými soma-
tickými mutáciami môže postupne do-
chádzať k  rozvoju CHIP. So zvyšujúcim 
sa vekom a získaním somatickej „driver“ 
mutácie sa následne naplno rozvíja klo-
nálna hematopoéza, ktorá sa môže ma-
nifestovať vo forme chronickej myelo-
proliferácie a  v  tomto stave pretrvávať 
aj roky (obr. 2A). Podľa nového, alterna-
tívneho modelu vzniku MPN dochádza 
k  získaniu somatickej „driver“ mutácie 
veľmi skoro (dokonca pred narodením), 
ale k  signifikantnej klonálnej expanzii 
dôjde až po desiatkach rokov v  súvis-
losti so zmienenými rizikovými faktormi 
spojenými so starnutím krvotvorby 
(obr.  2B). K  transformácii do sAML do-
chádza v  dôsledku akumulácie ďalších 
mutácií, ktoré zvyšujú onkogénny po-
tenciál klonu. Paralelne môže vznikať aj 
niekoľko rôznych klonov, nesúcich od-
lišné somatické mutácie. Tieto klony 
môžu mať aj odlišné fenotypové cha-
rakteristiky a  vykazovať rôznu citlivosť 
na liečbu a  schopnosť vyvolať relaps 
ochorenia. 

Faktory, ktoré vedú k rozvoju MPN aj 
tie, ktoré prispievajú k  ich výraznej fe-
notypovej variabilite sú heterogénne 
a  doposiaľ nie dostatočne vysvetlené. 
Ďalší intenzívny výskum je preto nevy-
hnutný, aby sme lepšie pochopili pa-
togenézu MPN a  mohli nové poznatky 
úspešne integrovať do klinickej praxe 
s cieľom spresniť dia gnostiku, prognos-
tiku a liečbu MPN. 

signály z  TPOR/ MPL receptorov, ktoré 
vedú k rozvoju ET [74]. 

Mikroprostredie kostnej drene 
a zápalové cytokíny
Mikroprostredie kostnej drene zohráva 
kľúčovú úlohu v regulácii hematopoézy 
a  jeho narušenie sa podieľa na rozvoji 
mnohých hematologických malignít. 
Ukazuje sa, že aj u  MPN, rôzne nehe-
matopoetické bunky kostnej drene, ako 
napr. endoteliálne bunky alebo mesen-
chymálne stromálne bunky, kooperujú 
s mutovanými MPN klonmi a spoločne 
vytvárajú niku podporujúcu propagá-
ciu a  progresiu MPN  [19]. Nie je však 
úplne jasné, nakoľko je aberantné mik-
roprostredie kostnej drene priamo zod-
povedné za heterogenitu MPN alebo je 
len jej odzrkadlením.

Janusove kinázy sú kritickými mediá-
tormi cytokínovej a  chemokínovej sig-
nalizácie a  signalizácie rastovými fak-
tormi  [75]. Dysregulácia JAK2/ STAT 
signalizácie u  MPN podporuje tvorbu 
mikroprostredia v kostnej dreni, ktoré sa 
vyznačuje aberantnou syntézou zápa-
lových cytokínov a  chemokínov (napr. 
interferónu  – IFN-, tumor nekroti-
zujúceho faktora  – TNF-, transformu-
júceho rastového faktora  – TGF- alebo 
interleukínu 1b – IL-1b) [76–78]. Tieto ná-
sledne spúšťajú systémovú a  chronickú 
zápalovú odpoveď spojenú so zvýšenou 
koncentráciou zápalových markerov v cir-
kulácii. Myšie modely ukázali, že zápalové 
cytokíny prispievajú k  takej remodelácii 
mikroprostredia kostnej drene, ktorá po-
tláča normálnu hematopoézu a podporuje 
transformáciu do myelofi brózy a leukémie. 
Napriek výraznému chronickému zápalu je 
však kumulatívny výskyt blastickej trans-
formácie u PV a ET (v porovnaní s  trans-
formáciou CML) relatívne nízky. Nedávna 
štúdia ukázala, že JAK2 V617F-mutantné 
bunky si v zápalovom prostredí indukujú 
ochranný program, sprostredkovaný fos-
fatázou DUSP1 (dual specifi city phospha-
tase  1), ktorý udržuje ich proliferačnú 
schopnosť a zároveň ich chráni pred aku-
muláciou poškodenia DNA a myelofi bro-
tickou a leukemickou transformáciou [79].

starnutia dochádza vplyvom chronic-
kého zápalu a prepínania metabolizmu 
krvotvorných kmeňových buniek z gly-
kolýzy na oxidatívnu fosforyláciu, ako 
aj vplyvom myeloidného posunu kr-
votvorby k rozvoju klonálnych pre-leu-
kemických stavov označovaných ako 
CHIP  [70–72]. CHIP je kľúčový rizikový 
faktor vedúci k získaniu JAK2 V617F so-
matickej mutácie (obr. 2A) alebo zrých-
lenej (sub)klonálnej expanzie preexis-
tujúceho minoritného klonu u  MPN 
(obr. 2B) a/ alebo prípadnej transformá-
cie do sAML. 

Pohlavie sa taktiež ukazuje ako vý-
znamný činiteľ fenotypu a  progresie 
MPN. U  žien sa častejšie vyskytuje ET, 
kým PV a  PMF prevládajú u  mužského 
pohlavia. Priebeh ochorenia býva mier-
nejší u  žien ako u  mužov; navyše ženy 
majú všeobecne lepšiu prognózu ako 
muži, u  ktorých je pozorované aj vyš-
šie riziko myelofibrotickej transformá-
cie  [73]. Ďalšou zložkou prispievajú-
cou k  heterogenite MPN je aj úroveň 
zásob železa v  organizme. Keďže že-
lezo je nevyhnutné pre erytropoézu 
a tvorbu hemoglobínu, jeho počiatočný 
deficit je spájaný skôr s  rozvojom ET
ako PV [41]. 

Heterogenita HSC
V posledných rokoch sa ukazuje, že po-
pulácia HSCs nie je homogénnou skupi-
nou buniek, ale obsahuje frakcie HSCs 
s rozdielnym líniovým potenciálom (tzv. 
„lineaged biased“ HSCs), ktoré už sú čias-
točne líniovo zamerané. Fenotypová 
špecifi kácia MPN môže preto závisieť aj 
od toho, v  akom líniovo preddetermi-
novanom type HSC JAK2 V617F mutá-
cia nastane [19]. U PV pacientov vzniká 
JAK2  V617F mutácia pravdepodobne 
v  HSC umiestnenej na vrchole hema-
topoetickej hierarchie (s  väčším multi-
potentným potenciálom), keďže jej prí-
tomnosť bola zachytená aj v lymfoidnej 
línii. Tiež sa predpokladá, že stredne vy-
soká bio chemická aktivita JAK2 V617F 
potláča MPL signalizáciu, a preto je skôr 
asociovaná s  PV fenotypom; pri nízkej 
aktivite JAK2  V617F zostávajú aktívne 
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