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L-asparaginaza je klucovym cytostatikom pouzivanym v liecbe detskej akutnej lymfoblastickej leukémie od 70. rokov
minulého storocia. Citlivost odpovede na L-asparaginazu koreSponduje s Uspesnostou terapie a celkovym prezivanim
pacientov. L-asparagindza je enzym, ktory depletuje asparagin a glutamin v sére pacientov. Leukemické bunky nie su
schopné si tento nedostatok nahradit a prechadzaju do bunkovej smrti. Nie vSetci pacienti vsak reaguju rovnako citlivo
na podanie tohto cytostatika. Studium ucinku L-asparagindzy je preto zasadné pre odstranenie inter-individualinych
rozdielov medzi pacientmi a vylepsSenie terapie. V tomto prehladovom ¢lanku sa pokusime popisat novy mechanizmus
Ucinku L-asparagindzy a jeho potencidlny dopad na citlivost leukemickych buniek k tomuto liecivu.
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SUMMARY

Hefmanova I., Starkova J.

Influence of cancer metabolism on the therapy of childhood leukaemia

L-asparaginase is a key cytotoxic agent that has been used in the treatment of acute lymphoblastic leukaemia since the
1970s. Responsiveness to L-asparaginase correlates with therapy outcome and overall patient survival. L-asparaginase
is an enzyme that depletes asparagine and glutamine in patient serum. Leukaemia cells are unable to compensate
for this deficiency and undergo cell death. Not all patients, however, respond uniformly to the administration of this
cytotoxic agent. A study of the effect of L-asparaginase is therefore essential for eliminating inter-individual differ-
ences between patients and improving therapy. In this review article, we will attempt to describe a new mechanism

of action of L-asparaginase and its potential impact on the sensitivity of leukaemia cells to this drug.
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TERAPIA DETSKEJ AKl'lTl{EJ
LYMFOBLASTICKEJ LEUKEMIE

Uspesnost lieby detskej akiitnej lymfoblastickej
leukémie (ALL) sa v poslednych desatroc¢iach dramatic-
ky zlep$ila. Do polovice 70. rokov minulého storocia iSlo
o ochorenie s velmi vysokou amrtnostou. V sucasnej
dobe dosahuje remisiu (vymiznutie blastov z kostnej
drene a mimodrenovych priestorov) 99 % pacientov,
prezitie bez relapsu choroby (prezivanie bez udalosti;
event free survival, EFS) takmer 80 % a celkové prezZitie
85 %[1]. NajcastejSou pricinou netispechu liecby ALL je
relaps ochorenia, ktory postihuje 15-20 % pacientov.
Za tymto uspechom stoji zavedenie novych liecebnych

protokolov a stratifikacia pacientov podla rizikovych
faktorov. Zaujimavé je, Ze repertoar cytostatik, ktory sa
pouziva, pozostava z rovnakych pripravkov uz od zaciat-
ku zavedenia Standardizovaného lie¢ebného protokolu.

Jednou z klucovych latok, ktord sa pouziva pri te-
rapii detskej ALL je L-asparaginaza (ASNaza). ASNaza
preukiazatelne zlepSuje tispesnost liecby, v monotera-
pii dosahuje kompletni remisiu 40-60 % pacientov.
Extenzivne Klinické stiidie potvrdili benefit intenzivnej
ASNAazovej terapie v porovnani s menej intenzivnou
[2, 3]. Liecebny protokol DFCI 91-01 preukazal signifi-
kantne lepsi vysledok liecby detskych pacientov s ALL,
pravdepodobne vdaka intenzifikacii poddvania ASNazy.
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Konkrétne, pacienti, ktori tolerovali 25 a menej tyZdriov
ASNAazu mali horsie vysledky ako ti, ktori dostavali
ASNazu najmenej 26 tyzdriov. V dalSej Stidii boli porov-
nané vysledky dvoch protokolov - COALL (nemecka pra-
covna skupina) a DCOG (Dutch Childhood Oncology Group).
COALL pouziva vysSiu kumulativnu dadvku ASNazy. To
mozno vysvetluje lep$i EFS u ETV6-RUNX1 pozitivnych
pacientov liecenych COALL (5 rocné EFS 80 %) v porov-
nani s ETV6-RUNXI1 pozitivnymi pacientmi liecenymi
DCOG protokolom (5 rocné EFS73 %). Napriek tomu, Ze
sa pouziva uz niekolko desiatok rokov, mechanizmus
cytotoxického tcinku a pric¢iny rezistencie neboli do-
sial dostatocne objasnené. Rezistencia na ASNazu je
negativny prognosticky faktor [4, 5].

L-ASPARAGINAZA
Zakladna charakteristika ASNazy a mechanizmus
ucéinku

ASNaza je enzym, ktory sa vyskytuje v rastlinach,
zivoc¢ichoch a mikroorganizmoch. Primarne hydroly-
zuje asparagin za vzniku aspartatu a amoniaku (obr. 1).
Vddsina typov ASNaz ma vsak i glutaminazovi ak-
tivitu, o znamena, Ze metabolizuje aj glutamin na
glutamat a amoniak. Glutaminazova aktivita tvori
len 3-9 % asparaginazovej aktivity, v zavislosti na
zdroji enzymu [6]. Antileukemicky G¢inok bol pévodne
prisudzovany predovSetkym asparaginazovej aktivi-
te enzymu. Deplécia glutaminu bola povazovana za
pri¢inu niektorych neziaducich ac¢inkov a bola snaha
vyvinat ASNazu bez glutaminazovej aktivity. Nové
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Stadie vSak ukazuja, Ze deplécia glutaminu je pre
cytotoxicky i¢inok tiez potrebna [7]. Existuju §tidie,
ktoré ukazali, Ze ¢im viac st bunky citlivé na ASNazu,
tym viac s zavislé vylucne na asparagine. A navyse,
ucinnost glutaminazovej aktivity ASNazy nie je dole-
Zitd pre bunky s nizkou hladinou asparagin syntetazy
(ASNS), antagonistu ASNazy [8].
Objav terapeutického ucinku L-asparaginazy
Protinddorovy t¢inok ASNazy bol prvykrat popi-
sany uz v roku 1953, kedy Kidd et al. zistili, Ze poda-
nie morcacieho séra inhibuje v mysiach rast lymfo-
mu [9]. DalSie $tidie ukazali, Ze pri¢inou regresie
tumoru je enzym ASNaza. V roku 1964 bolo zistené,
Ze je mozné ASNazu izolovat z baktérie Escherichia coli
(E. coli), vdaka tomu bolo mozné zacat produkovat a po-
uzivat tento enzym vo va¢Som mnozstve. Sticasne boli
zahdajené klinické Studie, ktoré potvrdili protinadorovy
ucinok ASNAazy. ASNAaza bola nasledne zaradena do
lie¢ebnych protokolov. Pri porovnavacich stididch bolo
potvrdené, Ze ASNAaza signifikantne zvysila EFS a OS
(celkové prezivanie, overall survival) [2, 3].

Mechanizmy vzniku rezistencie na L-asparaginazy

Napriek tomu, Ze je ASN4za v terapii ALL velmi tcin-
na, medzijednotlivymi pacientmi existuja rozdiely v cit-
livosti, vratane pripadov rezistencie k tomuto liecivu.
Rozdielna bazalna hladina génu pre ASNS bola povazo-
vanaza jednu z moznych pricin interindividualnych roz-
dielov. Experimenty na modeloch leukemickych bun-
kovych linii najprv potvrdili
predpoklad korelacie expresie
ASNS s citlivostou k ASNaze. Pri
snahe aplikovat tieto poznatky

1,0 O H2 OH
\/ pu \_/ ! vo vzorkach pacientov sa vSak
asparagindza P ———— + 51Fuac1a znacne skor’nphkov:ftla.
asparagin aspartat asparagin  glutamat Pri analyze expresnych profilov
ALL pacientov nebola expresia
génu pre ASNS medzi prvymi 35
- - génmi, ktoré rozdelili pacien-
NORMALNA BUNKA LEUKEMICKA BUNKA

L-asparaginaza
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tov podla citlivosti k ASNaze do
skupin pomocou hierarchického
Klastrovania [10]. DalSie nezrov-
nalosti vo vztahu ASNS a ASNazy
sa ukazali pocas §tadia senzitivi-
ty k tomuto liecivu u pacientov
s fiznym génom ETV6-RUNXI.
In vitro testy u tychto pacientov
poukazali na vyssiu citlivost na
ASNazu v porovnani s blastami

Obr. 1. Mechanizmus U¢inku L-asparaginazy v normalnych a leukemickych bunkdach
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pina [12] paralelne s holandskou skupinou Stams
et al. [13] publikovala paradoxne zvySenu expresiu
génu pre ASNS u ETV6-RUNXI-pozitivnych pacien-
tov. Nasledujtce $tudie odhalili, Ze problematika
vztahu medzi expresiou ASNS a citlivostou ALL blas-
tov k ASNaze je komplexnejSia. Prace publikovana
Finem et al. prezentuju klastrovanie ALL bunkovych
linii rezistentnych, resp. senzitivnych k ASNaze na
zaklade bazalnej expresie ASNS [14]. Klinické vzorky
pacientov sa vSak pri rovnakom type analyzy takto
nerozdelili. Bazilna expresia génu pre ASNS teda
nebola prediktivna pre odpoved primarnych vzoriek
k ASNaze. Po podani ASNazy vsak doslo k velmi po-
dobnym zmenam expresie velkého mnozstva génov
v spominanych linidch aj v klinickych vzorkach.
Jezrejmé, Ze sa na i€¢inku ASNAazy i na vzniku rezis-
tencie podiela okrem ASNS viac faktorov. Jednym z nich
mozZe byt aktivacny transkripény faktor 5 (activating
transcription factorS, ATF5). ATFS je stiCastou signalizacnej
drahy, ktora je aktivovanad pri nedostatku aminokyselin
avedie k zvySeniu expresie génu pre ASNS. Leukemické
bunky rezistentné k ASNaze maja v porovnani so sen-
zitivnymi bunkami zvySenu expresiu ATF5. Navyse
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Obr. 2. Hallmarks of cancer

Popisané Hannahan a Weinberg, Cell 2011, kde priradili novu ¢rtu nddorovych buniek, a to

deregulovana bioenergetika.
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bol u ALL pacientov objaveny polymorfizmus v ATFE5.
Pacienti s tymto polymorfizmom maja nizsi EFS, pri-
¢om tato spojitost bola dokazana len u pacientov liece-
nych ASNazou [15].

Medzi dalSie pric¢iny rozdielnej citlivosti ALL pa-
cientov k ASNaze moze patrit strata proteinovej kinazy
GCN2 (general control nonderepressible kinase 2). Tato kinaza
ma jediny znamy substrat, a-podjednotku eukaryo-
tického inicia¢ného faktoru 2 (elF2), a je nutna pri
bunkovej adaptacii na nedostatok aminokyselin. Na
mySom modeli bolo dokdzané, Ze poskodenie funkcie
GCN2 zvysuje citlivost k ASNaze [16, 17].

UspesSnost terapie moZe byt ovplyvnena tieZ roz-
dielnou farmakokinetikou. ASNaza moéze byt de-
gradovana lyzozomalnymi protedzami asparaginyl
endopeptiddzou a Cathepsinom B. Uvedené prote-
azy su produkované lymfoblastmi. Stiepenie vedie
k inaktivacii a vystaveniu epitopov imunitnej odpo-
vede [18]. PrediZena i¢innost ASN&zy bola objavena
u pacienta s germline mutaciou v géne kédujtcom
Cathepsin B [19].

Svoju dlohu moéZe tieZ zohravat mikroprostre-
die kostnej drene. Mezenchymadalne bunky kost-
nej drene maji schopnost
sekrécie asparaginu a in vitro
ochranit blasty pred nasledkami
podania ASNazy [20]. Meranim
obsahu asparaginu vo vzorkach
pacientov vSak bolo dokazané,

.Unlk.pr?d Ze po podani ASNazy nedochadza
|mun’|tnym k zvySeniu obsahu asparaginu
dohfadom v kostnej dreni [21]. Protektivna
tloha mezenchymalnych kme-
novych buniek je preto diskuta-

Umoznenie bilna.

Recentné publikované diata
poukazuju na vplyv adipocytov
v kostnej dreni, ktoré st schopné
syntetizovat glutamin a do velkej
miery zniZovat citlivost pacientov
na ASNazu [22].

replikativnej
nesmrtelnosti

Tumor
aktivujuci .. L.
. Pouzitie L-asparaginazy
zapal . A 2

u inych malignych ochoreni

ASNaza je zahrnuta do lieCeb-
nych protokolov vyhradne u ALL
anon-Hodgkinovych lymfémov.
Jej potencialny terapeuticky uci-
nok sa vsak Studuje aj u inych
typov hematologickych malignit.
Cytotoxicky ti¢inok ASNazy bol
potvrdeny na primarnych AML
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(akatna myeloidna leukémia) bunkach [23]. ASNaza
je obmedzene transportovana z vaskularneho do ex-
travaskularneho prostredia, preto je komplikované
jej vyuzitie u solidnych nadorov [24]. Napriek tomu
existuju studie, ktoré sa pripadnym pouzitim ASNazy
pre liecbu solidnych tumorov zaoberaju. Jedna sa
predovsetkym o nadory ovarii, u ktorych preklinic-
ké stidie dokazali anti-angiogénnu aktivitu ASNazy
a senzitivitu ovaridlnych nadorovych linii k ASNaze
[25, 26]. Druha faza klinickych §tadii vSak bola pre
vysoki toxicitu ASNazy ukoncena [27]. U¢inok ASNazy
je dalej Studovany u hepatocelularneho karcinému,
unadorov pankreasu, nadorov prostaty a nadorov moz-
gu [28-31].

METABOLI(}KE ZMENY
NADOROVYCH BUNIEK

Nepretrzity vyvoj v oblasti charakterizacie nadoro-
vych buniek ukazuje, Ze nddorové ochorenia st znac¢ne
heterogénne. MdZeme ich rozdelit podla organového
alebo tkanivového pévodu, pripadne podla molekular-
neho subtypu, ¢im ziskame velké mnozstvo podskupin,
ktoré sa lisia prognézou, terapiou a vysledkom liecby.
Pokrok v sekvenovani DNA a v dalSich analytickych
technolégidch umoznil rozlisit genetickl heterogenitu
medzi histologicky podobnymi tumormi a rozdielne
fenotypy buniek z jednej naddorovej populacie. Avsak
existuje skupina spolo¢nych ¢ft zahrniujuca biologické
vlastnosti a schopnosti, ktoré suvisia s nddorovym
bujnenim. Jedna z tychto ¢ft, ktora prvykrat popisali
uz skoro pred sto rokmi, jej rola vSak bola oficidlne
uznana az v roku 2011, je deregulovany metabolizmus
(obr. 2) [32].

Thompson et al. ukazali, Ze mutacie v protoonko-
génoch a nadorovo supresorovych génoch s priamo
spojené s prijmom vyzivy a bioenergetickymi poziadav-
kami nadorovych buniek. Z toho vyplyva, Ze podobne
ako iné abnormalne vlastnosti nadorovych buniek, aj
nadorovy metabolizmus je prvotne ovplyvneny pritom-
nostou genetickych zmien [33, 34].

Tie vedu k dysregulacii hlavnych signalnych drah
ovplyviniujucich bioenergetické a biosyntetické pro-
cesy. Prikladom genetickych 1ézii identifikovanych
u leukemickych pacientov, ktoré tieto javy ovplyv-
fujd, st IDH1/2, MYC, AKT, PTEN a p53. PTEN, AKT,
a zmeny PI3K boli zistené v 47,7 % pripadov akutnej
T-bunkovej lymfoblastickej leukémie (T-ALL) [35, 36].
Znizena aktivita alebo iplna strata PTEN v mySich mo-
deloch indukovala T-ALL a T-bunkovy lymfém a strata
PTEN urcovala zavaznost myeloidnych malignit [37,
38]. PTEN inhibuje jeden z hlavnych regula¢nych pro-
striedkov bioenergetiky a biosyntetickych procesov,
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drahu PI3K/AKT/mTOR. Mutovany MYC sa vysky-
tuje u B-bunkovych neoplazii a s vysokou frekven-
ciou u chronickej lymfoblastickej leukémie (CLL) [39].
Okrem toho hladina MYC je indukovand mnohymi
drahami, ktoré st u leukémie pozmenené, ako napri-
klad NOTCH1 alebo PI3K [40,41]. ZvySena expresia MYC
zvysuje glykolyzu, katabolizmus glutaminu a mitoge-
nézu [42-44]. Navyse MYC-indukované nadory u mysich
modelov st zavislé na metabolizme glutaminu [45].
Mutacie v TP53 st asociované s nepriaznivou prognézou
CLL a s rezistenciou na terapiu [46, 47]. Protein TP53 vy-
vazuje glykolyzu a OXPHOS, aby obmedzil uvolfiovanie
volnych radikalov - ROS [48, 49]. VSetky tieto genetické
zmeny vedd onkogénny metabolicky program, ktory
udrZuje bunky nazive, poskytuje stavebné kamene pre
neobmedzeny rast buniek a mitogenézu.

CHARAKTERISTIKA NADOROVEHO
METABOLIZMU

Nadorové bunky maju v porovnani so zdravymi bun-
kami iny metabolicky profil, respektive uprednostiiuja
iné metabolické drahy [32]. Zdravé diferencované bunky
tvoria ATP v aerébnych podmienkach prostrednictvom
oxidativnej fosforylacie. V anaerébnych podmienkach
vyuzivaja menej efektivnu glykolyzu. Pocas oxidativ-
nej fosforylacie vznika z jednej molekuly glukézy 36
molekal ATP, anaerébnou glykolyzou vzniknu z jed-
nej molekuly glukézy dve molekuly ATP. Nadorové
bunky majt zvysSenu spotrebu glukézy, pricom len
jej menSia frakcia je oxidovana v Krebsovom cykle.
Vacsina glukézy je pouzitd na produkciu laktatu, a to
aj v pritomnosti kyslika, preto sa tato reakcia nazyva
aerébna glykolyza. ZvySenie aerébnej glykolyzy na
ukor oxidativnej fosforylacie bola podla objavitela
pomenovana Warburgov efekt [50, 51]. D6vody, preco
nadorové bunky s preukazatelne vys$s$imi energeticky-
mi narokmi vyuzivaji menej efektivnu glykolyzu, sa
stale Studuja. Pévodna hypotéza, Ze nddorové bunky
maju poSkodené mitochondrie uz bola vyvratena [52].
Preco teda k Warburgovmu efektu dochadza? Zvyseny
obrat glukézy je pre nddorové bunky vyhodny. Napriek
tomu, Ze v priebehu glykolyzy vznikd menej molekul
ATP ako pocas oxidativnej fosforylacie, glykolyticky
tok je dostatocne rychly nato, aby pokryl energetic-
ké naroky. Pocas degradacie glukézy navysSe vznika
mnozstvo medziproduktov potrebnych pre biosyn-
tetické drahy, vratane rib6zovych cukrov na tvorbu
nukleotidov; glycerolu a citratu na syntézu lipidov;
neesencidlnych aminokyselin; a redukovanej formy
Nikotinamidadenindinukleotidfosfatu (NADPH). Tieto
medziprodukty vznikaja v rozvetvenych reakciach gly-
kolyzy, ako je napriklad pentédzovy cyklus [53, 54].



NADOROVY METABOLIZMUS DETSKYCH LEUKEMII

ZAVISLOST NA GLUTAMINE A ASPARAGINE

Vyznamnym substratom je okrem glukézy tiez
glutamin. Glutamin bol dlhodobo povazovany za ne-
esencidlnu aminokyselinu, ktorej primarna funkcia je
ukladat dusik vo svaloch a cirkulovat medzi orgdnmi.
Cicav(ie bunky méZu syntetizovat glutamin vo vacsSine
tkaniv, pokial sa vSak v priebehu rastu alebo ochore-
nia zvysSia naroky na pritomnost glutaminu, stiva sa
aminokyselinou esencidlnou, preto sa nazyva pod-
mienecne esencidlny. Proliferujice bunky maja vysoka
spotrebu glutaminu, ¢o dokazuje, Ze je glutamin ako
substrat velmi univerzalny. Metabolizmus glutami-
nu je mozné rozdelit podla vyuzitia y-dusika (syntéza
nukleotidov, hexosaminov), a-dusika alebo uhlikového
retazca. Druhé dva typy reakcii vyuzivaju ako substrat
glutamat. Hoci maja nadorové bunky vysoky obsah
intracelularneho glutamatu, udrzanie jeho hladiny za-
visi od schopnosti konvertovat glutamin na glutamat,
pretoze glutaminu je v extracelularnom prostredi na
rozdiel od glutamatu dostatok. Tento proces umoznuje
pritomnost glutaminazy, mitochondridlneho enzymu,
ktory je vysoko exprimovany v nadorovych bunkach.
Na experimentalnych modeloch bolo potvrdené, Ze
inhibicia glutaminazovej aktivity vedie k poklesu rastu
nadorovych buniek a xenograftov [55, 56]. Glutamin je
preto povazovany v pripade nadorového rastu za esen-
cialny [57]. V niektorych nadorovych bunkach je gluta-
min primarny mitochondridlny substrat a je potrebny
pre udrzanie mitochondridlneho membranového po-
tencidlu. Deamindciou glutaminu na pyruvat navyse
vznika NADPH, ktory je nutny pre syntézu lipidov
a pre redoxnu kontrolu. Dochadza tak tiez k doplneniu
intermediatov Krebsovho cyklu (anaplerosis). Dalej je
potrebny pre vstrebavanie aminokyselin a aktivaciu
kindzy mTOR. Glutamin sa podiela na metabolizme,
bunkovej signalizacii a génovej expresii, preto je snaha
vyuzit terapeutika, ktoré zasahuji do metabolizmu
glutaminu, velmi atraktivna a opodstatnena.

Asparagin je neesencialna aminokyselina vyuzivana
pri biosyntéze proteinov. Prekurzorom asparaginu je
oxaloacetdt. Transamindza prenesie amino skupinu
z glutamatu na oxaloacetat za produkcie aspartatu
a 2-ketoglutaratu. ASNS zasa prenesie amino skupinu
z glutaminu na aspartat za vzniku asparaginu. V euka-
ryotickych bunkach ASNS nepouziva iny zdroj amino
skupiny, preto je oznacovana ako glutamin-dependent-
na. Asparagin vstupuje do Krebsovho cyklu zvycajne
ako oxaloacetat.

Pri skimani protinddorového tc¢inku ASNazy sa naj-
prv zistilo, Ze leukemické bunky v porovnani s bunkami
zdravymi maji niZ8iu aktivitu ASNS [58, 59]. Dalej bola
potvrdend nizka hladina expresie génu pre ASNS, zhod-

na s nizkou hladinou proteinu. Vznikla tak hypotéza,
potvrdend niekolkymi publikaciami [11], Ze za i¢inkom
ASNazy stoji zavislost leukemickych buniek na extra-
celularnom asparagine. Zdravé tkaniva st podla tejto
tedrie schopné stratu asparaginu kompenzovat vdaka
dostatoc¢ne aktivnej ASNS, pripadne zvySenim expresie
tohto enzymu v odpovedi na asparaginova depléciu
(vid obr. 1). Nedostatok asparaginu vedie v leukemic-
kych bunkach k po§kodeniu proteosyntézy, syntézy
DNA, RNA a nasledne k apoptédze.

Zavislost na asparagine a glutamine je tizko spoje-
na. Adipocyty, ktoré produkuju signifikantné mnoz-
stvo glutaminu inhibuja cytotoxicky efekt ASNazy.
NavySe, v myS$iach transplantovanych ALL bunkami
bolo preukazané, Ze obezita vyznamne znizuje i¢inok
ASNazy [22]. Schopnost asparaginu kompenzovat stratu
glutaminu pri dlhotrvajicom deficite bola popisana u
bunkovych linii nddorov mozgu [60].

UCINOK L-ASPARAGINAZY
NA METABOLICKE PREPROGRAMOVANIE
LEUKEMICKYCH BUNIEK

Prace, ktoré poukazuju na vplyv ASNazy na bioener-
getické a biosyntetické procesy v bunkach, siahaja uz
do 70. rokov minulého storo¢ia. Saunders popisal, Ze
ASNaza inhibuje syntézu RNA a DNA, a tym zvySuje
svoj cytotoxicky i¢inok [61]. V dalSej praci autori uka-
zali inhibi¢ny t¢inok ASNazy na syntézu inzulinu,
ktorej nasledkom doSlo u niektorych pacientov k hy-
perglykémii [62]. V tom istom obdobi vysli prace popi-
sujlice ASNazu ako dysregulatora glykozylacie, ktord je
zasadnd pre aktivitu bielkovin [63]. Proces glykozylacie
vychadza z jednej z rozvetvenych reakcii glykolyzy.
Novsia praca ukazala, Ze cez pozmenenu glykozylaciu
proteinov ASNAaza ovplyviiuje mikroprostredie, a tym
inhibuje invazivitu a angiogenézu u ovarialneho kar-
cinému [64]. Vplyv ASNAzy na syntézu proteinu bol tiez
popisany vo viacerych pracach [65, 66].

V nasej poslednej publikacii sme popisali komplex-
nejsi obraz téinku ASNazy na metabolické procesy
leukemickych buniek (obr. 3). Studovali sme efekt
ASNazy na tri hlavné bioenergetické drahy: oxidativna
fosforylacia, glykolyza a oxidacia mastnych kyselin.
Leukemické bunky oSetrené ASNazou vykazovali zni-
Zzenu glykolyzu, zvySenu oxidaciu mastnych Kyselin,
ktorej nasledkom doslo pravdepodobne k zvySenej ak-
tivite respiracného retazca. Zaujimavé bolo, Ze ATP sa
nezvysilo, takze sa nejednalo o zvySenie oxidativnej
fosforylacie, ktorej vyslednym produktom je prave ATP.
Inhibiciu glykolyzy sme dokazali na zniZzenom prijme
glukézy znacenej radioaktivne a tiez znizenou hladi-
nou extracelularneho laktatu, produktu glykolyzy.
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TieZ sme detekovali zniZend hladinu proteinu c-MYC
ako aktivatora glykolyzy a glukézového transportéra 1.
Zmeny v oxidacii mastnych kyselin sme detekovali
ako zmenu mnozstva 3H-H,O pomocou radioaktivnej
metddy. 3H-H,0 vznika ako produkt oxidovaného ra-
dioaktivne znaceného 3H-palmitatu v mitochondriach.
Oxidacia mastnych kyselin slazi k produkcii NADH,
FADH, a acetyl-CoA, ktoré doplriuju Krebsov cyklus, ¢o
nasledne vedie k aktivacii mitochondrialnej oxidativnej
fosforylacii. Oxidacia mastnych kyselin je preto dolezi-
ta pre bunkovy rast nddorovych buniek v normalnych
aj deprivovanych podmienkach [67,68]. Podiel oxidacie
mastnych kyselin na bunkovom prezivani bol popisany
u réznych typov nadorov, ako je diftizny velkobunko-
vy B lymfém, mnohopocetny myelém a glioblastom
[69-71]. Aktivita oxidacie mastnych kyselin moéze tiez
sposobovat chemorezistenciu, ¢o bolo ukizané na ade-
nokarcinéme plic. Inhibitor oxidacie mastnych kyselin
etomoxir zvysil citlivost tohto nadoru k paklitaxelu [72].
Farmakologicka inhibicia oxidacie mastnych kyselin

_ lukeza BUNKOVA CYTOPLAZMA
GLYKOLYZA
pyruvat Acyl-CoA

by mohla byt prospesna aj pri liecbe hematologickych
ochoreni, na mysom modeli s myeloidnou leukémiou
bolo ukizané, Ze potencuje i¢inok konvencnej che-
moterapie [73].

Potencidlne klinicky zaujimavy vysledok sme do-
siahli, ked sme leukemické linie a tieZ leukemické
bunky izolované z kostnej drene pacientov kultivovali
samostatne s ASNazou alebo pre porovnanie v kombi-
ndcii s etomoxirom v exvivo podmienkach. Ukazali sme,
Ze inhibitor oxidacie mastnych kyselin zvysuje citlivost
leukemickych buniek na ASNazu. Z tychto vysledkov
vyplyva, Ze ASNaza okrem anti-leukemického ti¢inku
spusta tieZ zachranné procesy, medzi ktoré méZeme za-
radit aktivaciu oxidacie mastnych kyselin. Dalsi proces,
ktory bol v nasom modeli po podani ASNazy zmeneny,
bola autofagia. Autofagia bola v stvislosti s i¢inkom
ASNAazy opakovane popisovana a tiez bolo ukazané, ze
inhibicia autofagie pomocou hydrochloroquinu vedie
k zlepSeniu cytotoxickych tc¢inkov ASNazy v invitro aj in
vivo podmienkach na mysich xenograftoch [74].

ZAVER

Pozmeneny metabolizmus
sa ucastni leukemogénneho
procesu a tieZ samotného prie-
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behu ochorenia. Stcasné pu-
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blikacie popisujt metabolické
preprogramovanie nadorovych
buniek, ktoré je schopné znizit
efektivnost terapie a eventual-
ne viest k vzniku rezistencie.
Rezistencia na cytostatika je
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Obr. 3. Vysledky z publikdcie Hefmanova et al., Leukemia 2016 zhrhujuce vplyv L-asparagindzy na

hlavné bioenergetické procesy leukemickych buniek
OXPHOS - oxidativna fosforylacia, FAO - fatty acid oxidation, oxidacia mastnych kyselin.
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jednou z pri¢in vzniku relapsu.
V tomto prehladovom ¢lanku
sme sa snazili podrobne popisat
ucinok ASNazy, ktorej podanie
je kltucové v lieCbe detskej ALL.
Dalej sme popisali zmeny v me-
tabolizme leukemickych buniek
pri podani ASNAazy, ktoré ne-
budi vynimocné len pre toto lie-
¢ivo. Existuju aj iné cytostatika,
u ktorych bol tento jav popisa-
ny: dexametazén u chronickej
lymfoblastickej leukémie, ima-
tinib u chronickej myeloidnej
leukémie a bortezomib u mno-
hopocetného myelému [75-77].
Verime, Ze pochopenie metabo-
lickych zmien v désledku adap-
tacie na podavanu cytostaticka
liecbu by mohlo:
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