Influence of ocean circulation and the Kuroshio large meander on the 2018 Japanese eel recruitment season

Autoři: Yu-Lin K. Chang aff001;  Yasumasa Miyazawa aff001;  Michael J. Miller aff002;  Katsumi Tsukamoto aff002
Působiště autorů: Application Laboratory, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan aff001;  Department of Aquatic Bioscience, The University of Tokyo, Tokyo, Japan aff002
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pone.0223262


Japanese eel (Anguilla japonica) recruitment to Japan was very low during the early 2017−2018 recruitment season when most glass eels are usually caught, but catches increased in the late recruitment season when recruitment usually decreases. Concurrently, the Kuroshio meander south of Japan had formed again after the previous event ended in 2005. The role of the large meander and ocean circulation features such as the North Equatorial Current (NEC) in the unusual 2017−2018 Japanese eel recruitment timing-pattern was investigated using a three-dimensional particle tracking model that simulated swimming behaviors of virtual larvae (v-larvae) in addition to their drift in ocean currents. Four recruitment seasons were selected for when the Kuroshio large meander was present (2004−2005, 2017−2018) or absent (2009−2010, 2015−2016), and when NEC was shifted north (2004−2005, 2015−2016) or south (2009−2010, 2017−2018). The simulated recruitment timing-patterns were similar to the actual recent-year recruitment, with no early recruitment period v-larvae arrival to southern Japan and increased late period recruitment occurring. Rather than being related to the presence of the Kuroshio large meander, the late arrival appeared to be caused by a southward shifted, weak North Equatorial Current near the spawning area, a longer Subtropical Countercurrent eddy region retention time, and a weak Kuroshio during the early migration and recruitment period of those years. In the late recruitment period, the Kuroshio was stronger than other selected years near the East China Sea and south of Japan and v-larvae were transported more rapidly. The Kuroshio large meander may influence local eel recruitment in Japan, and the recirculation formed by the large meander could potentially enhance recruitment to the Tokai region. Oriented (northwestward) swimming v-larvae were less affected by the large meander, and showed higher recruitment success than those using along-current swimming. Although the Kuroshio large meander did not seem to be responsible for the unusual recruitment pattern in 2018, how Japanese eel larvae and glass eels actually cross out of the Kuroshio and reach coastal waters in Japan remains to be explored.

Klíčová slova:

Animal migration – Japan – Larvae – Latitude – Oceans – Swimming – Eels – Ocean circulation


1. Aida K, Tsukamoto K, Yamauchi K. Eel Biology. Springer Japan. 2003:497.

2. Tesch F. The eel. Blackwell publishing. 2003:408.

3. Tsukamoto K. Oceanic migration and spawning of anguillid eels. Journal of fish biology. 2009;74(9):1833–52. doi: 10.1111/j.1095-8649.2009.02242.x 20735675.

4. Kuroki M, Miller MJ, Tsukamoto K. Diversity of early life history traits in freshwater eels and the evolution of their oceanic migrations. Can J Zool. 2014;92:749–70. doi: 10.1139/cjz-2013-0303

5. Miller MJ, Tsukamoto K. The ecology of oceanic dispersal and survival of anguillid leptocephali. Canadian Journal of Fisheries and Aquatic Sciences. 2017;74(6):958–71. doi: 10.1139/cjfas-2016-0281

6. ICES. Reports of the Eifac/ICES working group on eels (WGEEL), 18–22 March 2013 in Sukarietta, Spain, 4–10 September 2013 in Copenhagen, Denmark ICES CM 2013/ACOM:18 253 pp. 2013.

7. Dekker W. Did lack of spawners cause the collapse of the European eel, Anguilla anguilla? Fisheries Management and Ecology. 2003;10(6):365–76. doi: 10.1111/j.1365-2400.2003.00352.x

8. Baltazar-Soares M, Biastoch A, Harrod C, Hanel R, Marohn L, Prigge E, et al. Recruitment collapse and population structure of the European eel shaped by local ocean current dynamics. Current biology: CB. 2014;24(1):104–8. doi: 10.1016/j.cub.2013.11.031 24374306.

9. Bonhommeau S, Chassot E, Planque B, Rivot E, Knap A, Le Pape O. Impact of climate on eel populations of the Northern Hemisphere. Marine Ecology Progress Series. 2008;373:71–80. doi: 10.3354/meps07696

10. Friedland KD, Miller MJ, Knights B. Oceanic changes in the Sargasso Sea and declines in recruitment of the European eel. ICES Journal of Marine Science. 2007;64(3):519–30. doi: 10.1093/icesjms/fsm022

11. Knights B. A review of the possible impacts of long-term oceanic and climate changes and fishing mortality on recruitment of anguillid eels of the Northern Hemisphere. Science of The Total Environment. 2003;310(1–3):237–44. doi: 10.1016/S0048-9697(02)00644-7 12812748

12. Chang Y-L, Sheng J, Ohashi K, Béguer-Pon M, Miyazawa Y. Impacts of Interannual Ocean Circulation Variability on Japanese Eel Larval Migration in the Western North Pacific Ocean. PLoS ONE. 2015;10(12):e0144423. doi: 10.1371/journal.pone.0144423 26642318

13. Chang Y-LK, Miyazawa Y, Miller MJ, Tsukamoto K. Potential impact of ocean circulation on the declining Japanese eel catches. Scientific Reports. 2018;8(1):5496. doi: 10.1038/s41598-018-23820-6 29615739

14. Hsu AC, Xue H, Chai F, Xiu P, Han Y-S. Variability of the Pacific North Equatorial Current and its implications on Japanese eel (Anguilla japonica) larval migration. Fisheries Oceanography. 2017;26(3):251–67. doi: 10.1111/fog.12189

15. Kim H, Kimura S, Shinoda A, Kitagawa T, Sasai Y, Sasaki H. Effect of El Niño on migration and larval transport of the Japanese eel (Anguilla japonica). ICES Journal of Marine Science: Journal du Conseil. 2007;64(7):1387–95. doi: 10.1093/icesjms/fsm091

16. Zenimoto K, Sasai Y, Sasaki H, Kimura S. Estimation of larval duration in Anguilla spp., based on cohort analysis, otolith microstructure, and Lagrangian simulations. Marine Ecology Progress Series. 2011;438:219–28. doi: 10.3354/meps09255

17. Miller MJ, Feunteun E, Tsukamoto K. Did a “perfect storm” of oceanic changes and continental anthropogenic impacts cause northern hemisphere anguillid recruitment reductions? ICES Journal of Marine Science. 2016;73(1):43–56. doi: 10.1093/icesjms/fsv063

18. Jacoby D, Gollock, M. Anguilla japonica. The IUCN Red List of Threatened Species Version 2015–3. 2014.

19. Dekker W. Slipping through our hands: population dynamics of the European eel. IJmuiden: s.n.; 2004.

20. Tsukamoto K. Oceanic biology: Spawning of eels near a seamount. Nature. 2006;439(7079):929-. 16495988

21. Tsukamoto K, Chow S, Otake T, Kurogi H, Mochioka N, Miller MJ, et al. Oceanic spawning ecology of freshwater eels in the western North Pacific. Nature communications. 2011;2:179. doi: 10.1038/ncomms1174 21285957

22. Qiu B, Chen S. Multidecadal Sea Level and Gyre Circulation Variability in the Northwestern Tropical Pacific Ocean. Journal of Physical Oceanography. 2012;42(1):193–206. doi: 10.1175/jpo-d-11-061.1

23. Qiu B, Rudnick DL, Cerovecki I, Cornuelle BD, Chen S, Schönau MC, et al. The Pacific North Equatorial Current: New insights from the origins of the Kuroshio and Mindanao Currents (OKMC) Project. Oceanography. 2015;28(4):24–33.

24. Chang Y-LK, Miller MJ, Tsukamoto K, Miyazawa Y. Effect of larval swimming in the western North Pacific subtropical gyre on the recruitment success of the Japanese eel. PLOS ONE. 2018;13(12):e0208704. doi: 10.1371/journal.pone.0208704 30571715

25. Kawabe M. Variations of Current Path, Velocity, and Volume Transport of the Kuroshio in Relation with the Large Meander. Journal of Physical Oceanography. 1995;25(12):3103–17. doi: 10.1175/1520-0485(1995)025<3103:VOCPVA>2.0.CO;2

26. Kawabe M. Variations of the Kuroshio in the Southern Region of Japan: Conditions for Large Meander of the Kuroshio. J Oceanogr. 2005;61(3):529–37. doi: 10.1007/s10872-005-0060-0

27. Usui N, Tsujino H, Fujii Y, Kamachi M. Generation of a trigger meander for the 2004 Kuroshio large meander. Journal of Geophysical Research: Oceans. 2008;113(C1). doi: 10.1029/2007JC004266

28. Usui N, Tsujino H, Nakano H, Matsumoto S. Long-term variability of the Kuroshio path south of Japan. J Oceanogr. 2013;69(6):647–70. doi: 10.1007/s10872-013-0197-1

29. Endoh T, Tsujino H, Hibiya T. The Effect of Koshu Seamount on the Formation of the Kuroshio Large Meander South of Japan. Journal of Physical Oceanography. 2011;41(9):1624–9. doi: 10.1175/jpo-d-11-074.1

30. Zenimoto K, Kitagawa T, Miyazaki S, Sasai Y, Sasaki H, Kimura S. The effects of seasonal and interannual variability of oceanic structure in the western Pacific North Equatorial Current on larval transport of the Japanese eel Anguilla japonica. Journal of fish biology. 2009;74(9):1878–90. doi: 10.1111/j.1095-8649.2009.02295.x 20735678

31. Chang Y-L, Miyazawa Y, Béguer-Pon M. The dynamical impact of mesoscale eddies on migration of Japanese eel larvae. PLOS ONE. 2017;12(3):e0172501. doi: 10.1371/journal.pone.0172501 28253293

32. Chang Y-LK, Miyazawa Y, Béguer-Pon M, Han Y-S, Ohashi K, Sheng J. Physical and biological roles of mesoscale eddies in Japanese eel larvae dispersal in the western North Pacific Ocean. Scientific Reports. 2018;8(1):5013. doi: 10.1038/s41598-018-23392-5 29567996

33. Marshall J, Plumb A. Atmosphere, Ocean and Climate Dynamics. Academic Press. 2007:344.

34. Miyazawa Y, Zhang R, Guo X, Tamura H, Ambe D, Lee J-S, et al. Water mass variability in the western North Pacific detected in a 15-year eddy resolving ocean reanalysis. J Oceanogr. 2009;65(6):737–56. doi: 10.1007/s10872-009-0063-3

35. Ohashi K, Sheng J. Investigating the Effect of Oceanographic Conditions and Swimming Behaviours on the Movement of Particles in the Gulf of St. Lawrence Using an Individual-Based Numerical Model. Atmosphere-Ocean. 2015:1–21. doi: 10.1080/07055900.2015.1090390

36. Press W, Teukolsky S, Vetterling W, Flannery B. Numerical recipes in Fortran 77: the art of scientific computing. Cambridge University Press. 1992.

37. Béguer-Pon M, Shan S, Thompson KR, Castonguay M, Sheng J, Dodson JJ. Exploring the role of the physical marine environment in silver eel migrations using a biophysical particle tracking model. ICES Journal of Marine Science: Journal du Conseil. 2015. doi: 10.1093/icesjms/fsv169

38. Béguer-Pon M, Ohashi K, Sheng J, Castonguay M, Dodson JJ. Modeling the migration of the American eel in the Gulf of St. Lawrence. Marine Ecology Progress Series. 2016;549:183–98. doi: 10.3354/meps11706

39. Aoyama J, Watanabe S, Miller MJ, Mochioka N, Otake T, Yoshinaga T, et al. Spawning Sites of the Japanese Eel in Relation to Oceanographic Structure and the West Mariana Ridge. PLoS ONE. 2014;9(2):e88759. doi: 10.1371/journal.pone.0088759 24551155

40. Tsukamoto K. Discovery of the spawning area for Japanese eel. Nature. 1992;356(6372):789–91.

41. Tsukamoto K, Umezawa A. Early life history and oceanic migration of the eel, Anguilla japonica. La Mer (Bull Soc franco-jap OceÂanogr, Tokyo). 1990;28:188–98.

42. Tosi L, Spampanato A, Sola C, Tongiorgi P. Relation of water odour, salinity and temperature to ascent of glass-eels, Anguilla anguilla (L.): a laboratory study. Journal of fish biology. 1990;36(3):327–40. doi: 10.1111/j.1095-8649.1990.tb05613.x

43. Okubo A. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep Sea Research and Oceanographic Abstracts. 1970;17(3):445–54.

44. Weiss J. The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D: Nonlinear Phenomena. 1991;48(2):273–94.

45. Shinoda A, Aoyama J, Miller M, Otake T, Mochioka N, Watanabe S, et al. Evaluation of the larval distribution and migration of the Japanese eel in the western North Pacific. Rev Fish Biol Fisheries. 2011;21(3):591–611. doi: 10.1007/s11160-010-9195-1

46. Chang Y-L, Oey L-Y. The Philippines–Taiwan Oscillation: Monsoonlike Interannual Oscillation of the Subtropical–Tropical Western North Pacific Wind System and Its Impact on the Ocean. Journal of Climate. 2012;25(5):1597–618. doi: 10.1175/JCLI-D-11-00158.1

47. Soeyanto E, Guo X, Ono J, Miyazawa Y. Interannual variations of Kuroshio transport in the East China Sea and its relation to the Pacific Decadal Oscillation and mesoscale eddies. Journal of Geophysical Research: Oceans. 2014;119(6):3595–616. doi: 10.1002/2013JC009529

48. Aoyama J, Shinoda A, Yoshinaga T, Tsukamoto K. Late arrival of Anguilla japonica glass eels at the Sagami River estuary in two recent consecutive year classes: ecology and socio-economic impacts. Fisheries Science. 2012;78(6):1195–204. doi: 10.1007/s12562-012-0544-y

49. Iinuma N. The Japanese eel catch in 2005. Shizuoka prefecture fisheries experiment station Hamanako branch Report. 2005:8.

50. Rypina II, Llopiz JK, Pratt LJ, Susan Lozier M. Dispersal pathways of American eel larvae from the Sargasso Sea. Limnology and Oceanography. 2014;59(5):1704–14. doi: 10.4319/lo.2014.59.5.1704

51. Nishi T, Kawamura G, Matsumoto K. Magnetic sense in the Japanese eel, Anguilla japonica, as determined by conditioning and electrocardiography. The Journal of experimental biology. 2004;207(Pt 17):2965–70. doi: 10.1242/jeb.01131 15277551.

52. Durif CMF, Browman HI, Phillips JB, Skiftesvik AB, Vøllestad LA, Stockhausen HH. Magnetic Compass Orientation in the European Eel. PLoS ONE. 2013;8(3):e59212. doi: 10.1371/journal.pone.0059212 23554997

53. Cresci A, Paris CB, Durif CMF, Shema S, Bjelland RM, Skiftesvik AB, et al. Glass eels (Anguilla anguilla) have a magnetic compass linked to the tidal cycle. Science Advances. 2017;3(6). doi: 10.1126/sciadv.1602007 28630895

54. Kimura S, Tsukamoto K. The salinity front in the North Equatorial Current: A landmark for the spawning migration of the Japanese eel (Anguilla japonica) related to the stock recruitment. Deep Sea Research Part II: Topical Studies in Oceanography. 2006;53(3):315–25.

55. Miller M, Kimura S, Friedland K, Knight B, Kim H, Jellyman D, et al. Review of ocean-atmospheric factors in the Atlantic and Pacific oceans influencing spawning and recruitment of anguillid eels. American Fisheries Society Symposium 2009;69:231–49.

56. Scott R, Marsh R, Hays GC. A little movement orientated to the geomagnetic field makes a big difference in strong flows. Marine Biology. 2012;159(3):481–8. doi: 10.1007/s00227-011-1825-1

57. Putman NF, Verley P, Shay TJ, Lohmann KJ. Simulating transoceanic migrations of young loggerhead sea turtles: merging magnetic navigation behavior with an ocean circulation model. The Journal of experimental biology. 2012;215(11):1863. doi: 10.1242/jeb.067587 22573765

Článok vyšiel v časopise


2019 Číslo 9

Najčítanejšie v tomto čísle

Tejto téme sa ďalej venujú…


Zvýšte si kvalifikáciu online z pohodlia domova

Faktory ovlivňující léčbu levotyroxinem
nový kurz

Kurz originály vs. generika

Autori: MUDr. Petr Výborný, CSc., FEBO

Autori: MUDr. Jiří Horažďovský, Ph.D

Klinická farmakokinetika betablokátorů

Všetky kurzy
Zabudnuté heslo

Nemáte účet?  Registrujte sa

Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.


Nemáte účet?  Registrujte sa