
ÚVOD

Slepota je jednou s deseti nejčastěj-
ších příčin invalidity a ročně jsou jí na
světě postiženy miliony lidí (49). Je také
subjektivně veřejností chápána jako
jedno z nejobávanějších postižení (8).
Okolo 140 000 nevidomých lidí v prů-
myslově vyspělých státech, pro které
není v současné době žádná léčba, by
mohlo mít prospěch z oční neuropro-
tézy (11). Možnost obnovit vidění u ne-
vidomých pacientů za použití elektrické
stimulace je spojena s objevem, že ke
vzniku světelných záblesků dochází,
když je elektrickým nábojem drážděno
slepé oko. Autorem tohoto objevu byl
LeRoy již v roce 1755 (7). Praktický roz-
voj použití těchto průkopnických objevů
byl umožněn výrazným rozvojem elek-
troniky a výpočetní techniky od 70. let
20. století. V současnosti je problema-
tika arteficielního vidění předmětem in-
tenzivního bádání několika vědeckých
týmů v USA, Evropě a Japonsku.

V klinické praxi se stále častěji setká-
váme s dotazy pacientů směřovaných
k současným možnostem a perspekti-
vám náhrady ztraceného vidění pomocí
očních protéz, proto jsme se rozhodli
shrnout současný stav vědeckých po-
znatků do uceleného souborného refe-
rátu. Jeho cílem není podat vyčerpávající
informaci o každém jednotlivém experi-
mentálním modelu, nýbrž nabídnout uce-
lený přehled problematiky. U každého
jednotlivého typu neuroprotézy předklá-
dáme odkazy na další zdroje informací.

NEUROFYZIOLOGICKÝ
ZÁKLAD

Obnovení vidění pomocí neuroprotézy
závisí na zajištění vhodné stimulace zra-
kové mozkové kůry pomocí souboru elek-
trických stimulací, které by měly kopírovat
vzor neurální aktivity spojený s procesem
normálního vidění tak, aby zrakové kůře
poskytly patřičný senzorický podnět.

Jedná se o velmi složitý technický pro-
blém, protože je nutné zajistit stimulaci
velkého počtu, přinejmenším stovek, sou-
běžných kanálů. První pokusy stimulovat
vidění elektrickou stimulací cerebrálního
kortexu jdou zpět až do roku 1918, kdy
Lowenstein a Borchardt náhodně stimulo-
vali areu striatu mozkové kůry u muže,
který podstoupil neurochirurgickou ope-
raci pro střelné poranění hlavy, při které
byla extrahována kulka z hlavy. Pacient
udával zábleskovité vjemy. Následné ex-
perimenty během celého dvacátého sto-
letí potvrdily tento nález a prokázaly, že
vnímané stimulované záblesky, kterým se
nyní říká „fosfény“, lze skutečně takto vy-
volat. Fosfény se objevují vždy ve stejném
místě zorného pole, jakmile je táž část
kortexu stimulována.

Všechny fosfény zasvítí rychlostí,
která se zdá, že nemá vztah k pulsu,
frekvenci opakování nebo jinému para-
metru stimulace. Dále se jeví bez vztahu
k srdečnímu rytmu, dechové frekvenci
nebo jiným fyziologickým funkcím. Mapo-
vání kortexu se nazývá retinotopie a byla
prvním významným pozorováním, které
sleduje fungování zrakové kůry mozkové,
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bohužel však dosud zůstává nejvlivněj-
ším momentem v současném myšlení
stran designu a implementace oční pro-
tézy.

ZRAKOVÁ DRÁHA 

Z bioinženýrského pohledu je lidská
zraková dráha složena z dvou mobilních
záznamových zařízení (oči), přenoso-
vého systému (zrakový nerv) a vyhodno-
covacího centra (mozek). Z biologického
pohledu jde o tříneuronovou dráhu, po-
kud za neurony nepočítáme tyčinky
a čípky.

Nejexternější část zrakové dráhy před-
stavuje sítnice. Je složena ze světloči-
vých buněk (tyčinek a čípků) a buněk bi-
polárních, které zajištují vertikální převod
sítnicí do neuritu gangliových buněk.
Buňky horizontální a amakrinní zajišťují
horizontální spojení neuronů sítnice. Sít-
nice převádí zrakové obrazy z vnějšího
světa v podobě „digitálních“ nervových
impulsů do vyšších zrakových center
(20). Tento proces je velmi složitý a do-
chází při něm ke kompresi signálu. Je-
diné vlákno bipolární buňky převádí sig-
nál z přibližně 130 světločivých buněk
(27). Proces kódování vizuální informace
a komprese není ve všech detailech ob-
jasněn. Jeho dokonalé poznání je velmi
důležité pro vývoj všech typů zrakových
neuroprotéz.

Dalším zrakovým centrem je corpus
geniculatum laterale (CGL). CGL je
součástí pulvinar thalami. Spojení mezi
ním a sítnicí je zajištěno optickými
nervy, které se vzájemně kříží v chi-
asma opticum. Dále pokračuje tractus
opticus s vlákny optických nervů
z obou stran. V CGL dochází k inte-
graci zrakových signálů z obou očí v bi-
nokulární obraz. Signál ze sítnice je
v CGL ovlivněn celým komplexem zpět-
novazebných signálů. Tyto signály ne-
přichází pouze ze zrakových center,
ale i z mimozrakových. Předpokládá
se, že počet mimozrakových synapsí
mnohonásobně převyšuje zrakové sy-
napse (38).

Neurony z CGL vedou hlavně do pri-
márního korového zrakového centra
(V1, Brodmanova area 17). Je to nej-
starší kortikální area popsaná v lidském
mozku (Genari 1782). Je důležité, že
area V1 není koncem zrakové dráhy
(15), ale je to jen jedno z center zra-
kové dráhy. Slepota je výsledkem poru-
chy toku signálu v kterékoliv části zra-
kové dráhy a zraková neuroprotéza
musí být umístěna v kontaktu s funkč-
ními neurony za místem postižení (24).
Neuroprotézu je možno teoreticky za-
pojit do kteréhokoliv místa zrakové
dráhy počínaje sítnicí, přes nervus opti-
cus až k mozkovým centrům. Každá

strategie má své výhody a úskalí, které
je potřeba ve vývoji použitelné neurop-
rotézy překonat (34). Historicky prvním
místem stimulace byla mozková kůra.
V současnosti jsou hlavním předmětem
vývoje retinální neuroprotézy.

PŘEHLED NEUROPROTÉZ

1. Retinální neuroprotézy
Prvotní impuls k vývoji retinálních neu-

roprotéz byl objev Tassikera z roku 1956.
Popsal u pacienta, kterému umístil pod
sítnici drobný fotosenzitivní selenový plí-
šek, vnímání světelných záblesků (46).
Mohutný rozvoj retinálních neuroprotéz
byl umožněn miniaturizací elektroniky na
počátku 90. let 20. století. Vývoj retinál-
ních neuroprotéz se hned od samého po-
čátku rozdělil do dvou hlavních proudů
podle lokalizace neuroprotézy vůči sít-
nici. Jde o neuroprotézy subretinální
a epiretinální

Subretinální neuroprotézy
Subretinální protézu představuje velké

množství malých fotosenzitivních diod
umístěných na tenké destičce. Každá
z diod je vybavena mikroelektrodou
a celé zařízení je implantováno do subre-
tinálního prostoru mezi buňky pigmento-
vého epitelu a fotoreceptory. Diody jsou
aktivovány dopadajícím světlem a jimi
vyvolané napětí aktivuje neurony sítnice
pomocí mikroelektrod. Vývojem subreti-
nálních neuroprotéz se zabývají dva
týmy – Optobionic corporation pod vede-
ním dr. Chowema v Chicagu (19) a tým
z Tübingenské univerzity pod vedením
prof. Zrennera (47).

Subretinální neuroprotézy mají řadu
výhod – mikrofotodiody jsou v podstatě
pouhým nahrazením fotoreceptorů sít-
nice a při neporušených vnitřních vrst-
vách sítnice není potřeba žádné speci-
ální zpracovávání signálu. Další značnou
výhodou je poměrně jednoduché umís-
tění neuroprotézy do subretinálního pro-
storu a hlavě následná pevná fixace zde.
Byly vypracovány dva přístupy: první –
ab interno klasickou pars plana vitrekto-
mii a implantací neuroprotézy skrz skle-
rotomii a retinotomii do subretinálního
prostoru a druhý – ab externo skrz orbitu,
skléru a cévnatku na zadním pólu oka.
U subretinálních neuroprotéz není po-
třeba žádného extraokulárního snímače
(kamery), a proto jsou zachovány pohyby
očí s prostorovým vnímáním.

Během prvních pokusných implantací
na zvířecích modelech byly odhaleny tech-
nické nedostatky způsobené korozí mate-
riálu použitých implantátů s následnou
změnou elektrických vlastností. Problémy
se podařilo vyřešit potažením povrchu in-
taktními glykoproteiny. Největší technický
problém při vývoji subretinálních implan-

tátů se týká energie. V počátku vývoje se
předpokládalo, že subretinální implantát
bude moci fungovat bez externí energie.
Tato domněnka byla vyvrácena během
testů na zvířecích modelech.To vedlo k vý-
voji aktivních subretinálních neuropotéz
s vnějším přídatným zdrojem energie.
Současná koncepce řešení nedostatku
energie subretinálních implantátů je ře-
šena pomocí zesilovače implantovaného
do čočkové kapsuly (podobně jako intrao-
kulární čočka při operaci katarakty). Ener-
gie tomuto zesilovači je dodávána pomocí
magnetické indukce z vnější strany oka
a na subretinální implantát je přenášena
v podobě infračerveného záření.

Nevýhodou subretinálních neuropro-
téz je relativně úzká indikační skupina
pacientů vzhledem k velmi distálnímu
umístění ve zrakové dráze. Vhodnými
kandidáty se jeví pacienti s retinitis pig-
mentosa (RP) a geografickou atrofií
v rámci věkem podmíněné makulární de-
generace (VPMD), u kterých sice došlo
k degeneraci světločivých buněk, ale
předpokládá se, že ne v počtu, který by
znemožnoval arteficiální stimulaci. Zaji-
mavé je, že při implantaci subretinálních
zařízení byl pozorován i neuroprotektivní
efekt u pacientů s RP, který byl popsán
Parduem. Je vysvětlován ovlivněním pro-
dukce růstových faktorů na buněčné
úrovni (28, 29). Přes mnohé problémy při
vývoji zahájil Zrenner v roce 2005 klinic-
kou studii se svým zařízením (48).

Epiretinální neuroprotézy
Konstrukcí epiretinálních protéz se za-

bývají týmy Humaynho, Eckmilera, Rizza
a nově japonský tým vedený Tanou (10,
17, 26, 31, 46).

Na rozdíl od subretinálních neuroprotéz
jsou napojeny přímo na sítnicové gangli-
ové buňky. Epiretinální protézy nemají
světločivé elementy. Vlastní epiretinální
protéza je pouze tenká destička s velkým
množstvím mikroelektrod, která musí byt
napojena na zevní snímací zařizení (ka-
meru). V současné době je snímací zaří-
zení buď zabudováno do brýlí, nebo v mi-
niaturní podobě do intraokulární čočky,
která se implantuje do oka technikou pou-
žívanou při operaci katarakty. Protože vi-
zuální signál je do optické dráhy imple-
mentován až za strukturou sítnice
(přemosťuje bipolární buňky), je důležitou
součástí epiretinálních neuroprotéz pro-
cesor, který signál „digitalizuje“ do podoby
elektrických impulsů. Nejsložitějším pro-
blémem tohoto procesu je časoprostorové
uspořádání signálu pro budoucí rekon-
strukci vizuální informace mozkovými zra-
kovými centry. Druhým významným pro-
blémem je přesné umístění mikroelektrod.
Retinotopika gangliových buněk je velmi
odlišná od retinotopického uspořádání na
úrovni světločivých elementů.

Samostatným problémem je fixace
epiretinální protézy, která je v kontrastu
s relativní jednoduchostí fixace subreti-
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nální protézy. Uchycení neuroprotézy
u všech pokusných zvířat bylo kompliko-
váno formováním fibrotických epiretinál-
ních membrán a řešení tohoto problému
přineslo značné zdržení vývoje použitel-
ných epiretinálních neuroprotéz. Dnes
se již tento problém ovšem jeví jako vy-
řešený (43). Bylo dosaženo dostatečné
fixace v kombinaci s dlouhodobou bio-
kompatibilitou pomocí svorek z biokom-
patibilních kovů.

Výhodou epiretinální protézy je, že ne-
potřebuje transparentní optická media,
protože snímač (kamera) je umístěna ex-
traokulárně. Indikace vyplývají s anato-
mického umístění za světločivnými buň-
kami a bipolárními buňkami. V zásadě
jde opět o retinitis pigmentosa a VPMD,
v obou případech těžších forem a malou
skupinu degenerací bipolárních buněk.

2. Neuroprotézy optického nervu
Oční nerv je dobrým místem pro sti-

mulaci, protože celá optická dráha je zde
koncentrována v malém prostoru a navíc
k očnímu nervu je poměrně snadný chi-
rurgický přístup. Je zde ovšem několik
překážek. Zaprvé nervus opticus je
denzní nervová struktura s asi 1,2 mil.
axony v 2 mm2, ve které je složité dosáh-
nout přesné topické stimulace axonů.
Chirurgická manipulace vyžaduje protětí
dury mater s možnými infekčními ná-
sledky pro CNS a poškozením krevního
oběhu očního nervu (42). Navíc inter-
vence v tomto místě vyžaduje nepoško-
zené sítnicové gangliové buňky, takže
má stejné indikační pole jako neuropo-
téza epiretinální.

Veraart a spol. (42) publikovali studii
na slepých dobrovolnících s RP, jimž byl
implantován konektor neurostimulátoru
na optický nerv, což u pacientů vyvolá-
valo fosfény. Dobrovolníci používali ka-
meru umístěnou na jejich hlavě a prošli
tréninkovou procedurou s 45 položkami.
Výsledkem byla ucházející orientace
nevidomých dobrovolníků v nezná-
mém prostředí.

3. Kortikální neuroprotézy
Jsou nejstarším přístupem k nahra-

zení ztráty zrakové funkce. Kortikální
neuroprotézy jsou složeny ze všech ob-
vyklých složek, snímacího zařízení, kó-
dovacího zařízení a elektrod, které v pří-
padě kortikálních neuroprotéz jsou
umístěny v okcipitální oblasti kůry moz-
kové. Jejich velkou potenciální výhodou
je obejití všech poškozených či nemoc-
ných částí zrakové dráhy, takže teore-
ticky mají potenciál pro největší počet ne-
vidomých pacientů. Vývojem v této
oblasti se zabývají týmy pod vedením
Brendlyho (4) a Dobelleho a spol. (8, 9).

Počátek vývoje kortikální protézy
sahá do sedmdesátých let minulého sto-
letí. Brindley studoval efekt zrakové korti-
kální stimulace pomocí relativně velkých
elektrod umístěných na pio-arachnoidál-

ním povrchu (5). Výsledkem byly mnoho-
četné nekontinuální fosfény, někdy pro-
vázené bolestí v důsledku meningeální
stimulace. Experimenty poukázaly na
řadu problémů, které jsou řešeny do sou-
časné doby. Zásadní problém byla veli-
kost elektrod implantovaných do zrakové
kůry. První elektrody byly poměrně velké
a ke stimulaci potřebovaly velké napětí.
Velké napětí vede k poškození nervo-
vých struktur v okolí s meningeálním
drážděním a u některých pacientů vyvo-
lávalo epileptické epizody. Zmenšením
elektrod v dalším vývoji bylo dosaženo
snížení potřebného napětí s následným
vyřešením souvisejících problémů.
Menší elektrody znamenají ovšem pro-
blém při přesné topické implantaci a fi-
xaci v oblasti okcipitálního laloku, který
do značné míry souvisí se změnami ob-
jemu mozku. Tento problém se doposud
nepodařilo uspokojivě vyřešit.

Samostatný problém představuje bio-
kompatibilita materiálu pro výrobu neu-
roprotézy. Doposud byly v této oblasti
provedeny experimenty s desítkami ma-
teriálů a u všech byla popsána chronická
zanětlivá odezva v okolní tkáni (1, 22, 40)
s vytvořením gliové jizvy. Pro definitivní
vyřešení těchto problémů bude zapotřebí
ještě mnoho teoretických experimentů
a klinických studií.

PLASTICITA MOZKU
A INDIKACE IMPLANTACE
NEUROPROTÉZY

V posledních letech se neurofyziolo-
gický výzkum zaměřil na pochopení fy-
ziologických změn v mozku osleplého
jedince. U nevidomých jedinců jedno-
značně dochází ke zlepšení senzoric-
kých a vyjadřovacích funkcí (3, 30, 32,
41). Důležitým poznáním posledního
desetiletí je fakt, že neurofyziologickým
podkladem těchto změn jsou nejen
změny v korových centrech ostatních

senzorických funkcí, ale že pro jejich
zlepšení je použita i (u slepého paci-
enta nepoužívaná) zraková korová ob-
last (2, 6, 12). Mozky nevidomých pa-
cientů zobrazené pomocí funkční
magnetické rezonance (fMRI) dokazují
výraznou činnost v okcipitální oblasti
u činností jako čtení Braillova písma či
poslouchání hovoru (12, 37). Zajímavé
je, že ne u všech pacientů dochází ke
změnám ve stejném měřítku. Byli po-
psáni nevidomí pacienti, u kterých do-
cházelo jen k minimálnímu zapojení ok-
cipitálního laloku u výše popsaných
činností. Další zajímavou otázkou je
vztah plasticity mozku k délce slepoty.
U pacientů s vrozenou slepotou byla
zraková kůra téměř kompletně využita
pro jiné senzorické funkce, zatímco
u čerstvě osleplých pacientů jen čás-
tečně. V této oblasti se otvírá mnoho
otázek o časové vhodnosti implantace
zrakových neuroprotéz či jiné léčby sle-
poty (45).

ZÁVĚR

Zatímco technická stránka vývoje neu-
roprotéz prodělala mohutný vývoj
a mnoho problémů se podařilo překonat,
ukazuje se, že velkou překážkou je sa-
motná fyziologie vidění. Naše zraková
kůra počítačově nezpracovává obraz
v pojmech, bodech či pixelech, spíše je
vnímaný obraz určen pojmy, jako jsou
okraje, struktura, barvy, hloubka a pohyb.
Snaha stimulovat vidění na principu mo-
zaiky lze přirovnat snaze dobře hrát na
klavír lokty či kolenem. Nikdo zatím nena-
šel kortikální neuron, který by dekódoval
jednoduché body. Na druhé straně
mnoho neuronů v area striata je citlivých
na orientaci, prostorovou frekvenci
(osnovu), binokulární disparitu (hloubku),
barvu, směr pohybu a rychlost. To jsou di-
menze vidění a je logické, že zraková pro-
téza by měla informace tohoto typu před-
kládat mozku.
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Obr.1. Schematické znázornění polohy subretinálního a epiretinálního implantátu 
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Po odkrytí významných neurofyziolo-
gických problémů při vývoji kortikálních
metod stimulace se pozornost obrátila
na stimulaci sítnice. I zde se však uka-
zuje neurofyziologie jako limitující faktor
rozvoje klinicky použitelných metod. Již
první linie kódování v samotné sítnici

představují pro současné poznání těžko
řešitelný problém.

Přesto jsme v současné době na
prahu uvedení subretinálních neuropro-
téz do klinické praxe. Probíhající klinické
studie ukazují slibné výsledky a u tohoto
typu neuroprotéz se dá předpokládat

uvedení do širší praxe v horizontu pěti let
u indikovaných pacientů. U ostatních typů
neuroprotéz je uvedení do praxe stále
v nedohlednu. Jak ovšem víme z jiných
oblastí oftalmologie a medicíny, může do-
jít k dosažení použitelné neuroprotézy za
kratší dobu, než si všichni myslíme.
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