# Synthesis and biological properties of chosen symmetrical amides and thioamides of terephthalic acid

AGNIESZKA JĘDRZEJOWSKA¹, MAREK MATUSSEK¹, VIOLETTA KOZIK¹, ANDRZEJ BĄK¹, IVETA ZADRAŽILOVÁ², JOSEPH JAMPÍLEK²

## Introduction

Modern Organic Chemistry is a research area which connects not only the synthesis of new chemical compounds with interesting properties, but also the design and prediction of attractive structures and properties. The new compounds are widely used in various industries such as pharmaceutical, electronics, chemical and others.

# **Experimental methods**

The aim of this study was the synthesis of new diamide and dithioamide derivatives of terephtalic acid and testing for biological activity.

Synthesis of diamides of terephthalic acid consisted in reactions of aminoacids with terephthalic acid chloride<sup>1)</sup>. Synthesis of dithioamide derivatives consisted in thionation<sup>2)</sup>.

Table 1. Antifungal activity

|    | MIC (IC <sub>80</sub> ) (μM/L) |                      |                       |                 |  |  |  |  |
|----|--------------------------------|----------------------|-----------------------|-----------------|--|--|--|--|
|    | clogP                          | C. albicans CCM 8261 | C. krusei<br>CCM 8271 | C. parapsilosis |  |  |  |  |
| 1a | $-0.15 \pm 0.52$               | > 128                | > 128                 | > 128           |  |  |  |  |
| 2a | $3.83 \pm 0.67$                | > 128                | > 128                 | > 128           |  |  |  |  |
| 3a | 1.61 ± 0.53                    | > 128                | > 128                 | > 128           |  |  |  |  |
| 1b | $1.66 \pm 0.66$                | 64                   | 64                    | 64              |  |  |  |  |
| 2b | $6.00 \pm 0.66$                | > 128                | > 128                 | > 128           |  |  |  |  |
| 3b | $3.42 \pm 0.66$                | > 128                | > 128                 | > 128           |  |  |  |  |

Table 2. Antibacterial activity

| MIC ( $IC_{80}$ ) ( $\mu$ M/L) |                  |                             |                              |                         |                                     |                      |  |  |  |
|--------------------------------|------------------|-----------------------------|------------------------------|-------------------------|-------------------------------------|----------------------|--|--|--|
|                                | clogP            | S. aureus<br>MRSA<br>SA 630 | S. aureus<br>MRSA<br>SA 3032 | S. aureus<br>MRSA<br>Sa | S. aureus<br>SA 63718<br>ATCC 29213 | Escheric<br>hia coli |  |  |  |
| 1a                             | $-0.15 \pm 0.52$ | > 256                       | > 256                        | > 256                   | > 256                               | > 256                |  |  |  |
| 2a                             | $3.83 \pm 0.67$  | > 256                       | > 256                        | > 256                   | > 256                               | > 256                |  |  |  |
| 3a                             | $1.61 \pm 0.53$  | > 256                       | > 256                        | > 256                   | > 256                               | > 256                |  |  |  |
| 1b                             | $1.66 \pm 0.66$  | 256                         | 64                           | 64                      | 64                                  | > 256                |  |  |  |
| 2b                             | $6.00 \pm 0.66$  | > 256                       | 256                          | 128                     | > 256                               | > 256                |  |  |  |
| 3b                             | $3.42 \pm 0.66$  | 256                         | 128                          | 128                     | 128                                 | > 256                |  |  |  |

Diamides of terephthalic acid obtained in the reactions with amino acids possess interesting properties. Functionalization using bioactive compounds is attractive in terms of synthesis, as in this way it is possible to get new active analogs.

The compounds were tested for their antibacterial<sup>3)</sup>, antifungal<sup>4)</sup> and antimycobacterial<sup>3)</sup> activities.

### Results and discussion

The chemical structure of the received compounds, oxygen (1a-3a) and sulphur (1b-3b) analogs, was confirmed using <sup>1</sup>H spectra and <sup>13</sup>C NMR, and mass spectrometry.

Setting a MIC (Minimal Inhibitory Concentration) parameter defined antifungal properties (Table 1). For the tests, three pathogenic species of the fungi species Candida (*C. albicans, C. fragile, C. parapsolosis*) were used.

<sup>&</sup>lt;sup>1</sup>University of Silesia, Institute of Chemistry, Katowice, Poland

<sup>&</sup>lt;sup>2</sup>University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic

Table 3. Antimycobacterial activity

| MIC (IC <sub>80</sub> ) (μM/L) |                  |              |            |             |  |  |  |  |
|--------------------------------|------------------|--------------|------------|-------------|--|--|--|--|
|                                | clogP            | M. smegmatis | M. marinum | M. kansasii |  |  |  |  |
|                                |                  | ATCC 700084  | CAMP 5644  | DSM 44162   |  |  |  |  |
| 1a                             | $-0.15 \pm 0.52$ | > 256        | > 256      | 256         |  |  |  |  |
| 2a                             | $3.83 \pm 0.67$  | > 256        | > 256      | > 256       |  |  |  |  |
| 3a                             | $1.61 \pm 0.53$  | > 256        | > 256      | > 256       |  |  |  |  |
| 1b                             | $1.66 \pm 0.66$  | 256          | > 256      | 128         |  |  |  |  |
| 2b                             | $6.00 \pm 0.66$  | > 256        | > 256      | > 256       |  |  |  |  |
| 3b                             | $3.42 \pm 0.66$  | > 256        | > 256      | 256         |  |  |  |  |

The next stage of research was to determine the antimicrobial properties (Table 2). For this purpose the strains of Gram-positive bacteria *S. aureus* (Sa ATCC 29213), methicillin-resistant *S. aureus* (MRSA 63718, SA 630, SA 3202) and Gram-negative *E. coli* were used.

The final stage of biological research was to test the activity of bacteria species mycobacterium (Table 3). The tests were carried out using different incubation time, i.e. 3 to 21 days for the corresponding strain of bacteria.

#### **Conclusions**

The tests of biological properties of new derivatives show an increase in activity for the thioamides in relation to their oxygen counterparts. However, none of the analogs tested showed high biological activity.

Mark Matussek is co-financed by the European Social Fund, the project DoktoRIS.

Conflicts of interest: none.

#### References

- Yu S-L., Doub X-Q., Qua D-H., Feng Ch-L. C2-symmetric benzene-based organogels: A rationally designed LMOG and its application in marine oil spill. J. Mol. Liq., 2014; 190, 94–98.
- Polshettiwar V., Kaushik M. P. A new, efficient and simple method for the thionation of ketones to thioketones using P4S10/Al2O3. Tetrahedron Lett. 2004; 45, 6255–6257.
- Pauk K., Zadrazilova I., Imramovsky A., Vinsova J., Pokorna M., Masarikova M., Cizek A., Jampilek J. New derivatives of salicylamides: Preparation and antimicrobial activity against various bacterial species. Bioorg. Med. Chem. 2013; 21, 6574–6581.
- Adlard P. A., Cherny R. A., Finkelstein D. I., Gautier E., Robb E., Cortes M., Volitakis I., Liu X., Smith J. P., Perez K., Laughton K., Li Q-X., Charman S. A., Nicolazzo J. A., Wilkins S., Deleva K., Lynch T., Kok G., Ritchie C. W., Tanzi R. E., Cappai R., Masters C. L., Barnham K. J., Bush A. I. Rapid Restoration of Cognition in Alzheimer's Transgenic Mice with 8-Hydroxy Quinoline Analogs Is Associated with Decreased Interstitial AB, Neuron 2008; 59, 43–55.